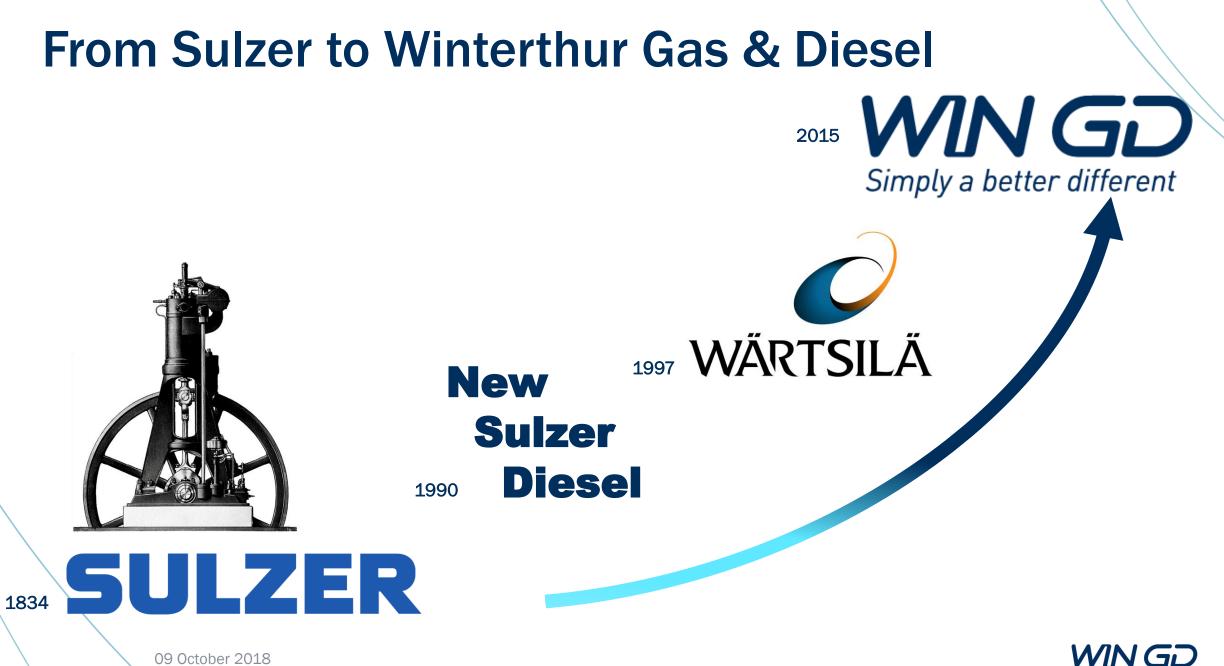
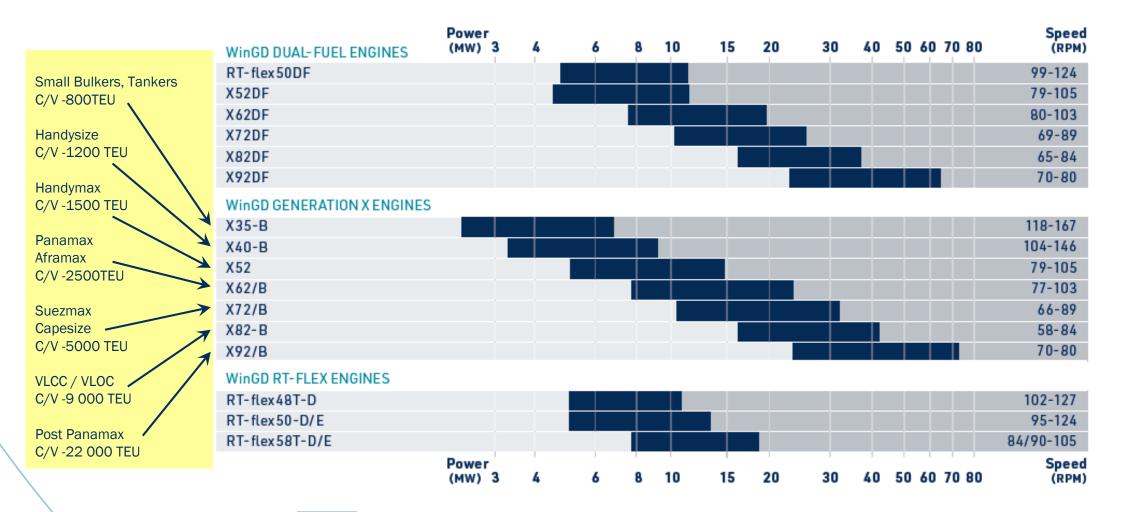
NTIK event Hamburg, 16 Oct 2018


X- and X-DF engine market & technology

R.Wettstein, GM Marketing & Application



Content

- 1) X-type Market update
- 2) X-DF Market update & Technology
- 3) X-DF operational experience

Engine portfolio

An engine for every need - 10 bore sizes

X- engine references

X engine type	Vessel type		Orders
X35 X40	8K Multi-Purpose Vessels 10-44K dwt Bulk Carriers 11-22K dwt Chemical Tankers 1-2K TEU Feeder CVs 2K cars Car Carriers		66 engines 10 engines
X52	38-60K dwt Bulk Carrier 50K dwt Product Tankers		26 engines
X62	56–108K dwt Bulk Carriers 60K dwt Chemical Tankers 115K dwt Crude/Product Tankers 2-3K TEU Feeder CVs		58 engines
X72	150-210K dwt Bulk Carriers 158K dwt Crude Oil Tankers 3-8K TEU Intermediate CVs		74 engines
X82	250-400K dwt Bulk Carriers 280-310K dwt Crude Oil Tankers 8-12K TEU Neo-Panamax CVs 12-15K TEU Neo-Panamax CVs		98 engines
X92	8-12K TEU Neo-Panamax CVs 12-15K TEU Neo-Panamax CVs 15K+ TEU Post-Panamax CVs	CONTRACTOR OF THE OWNER	50 engines

382 X engines (ca. 9700 MW)

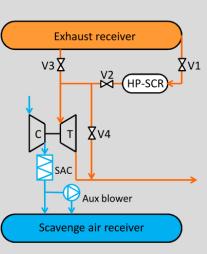
09 October 2018

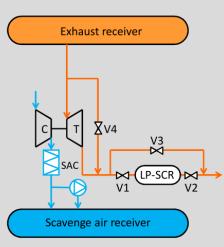
TOTAL

5

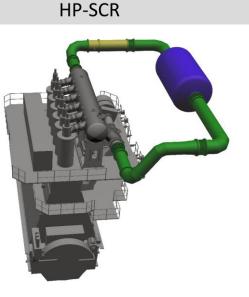
How to reach emission compliance ?

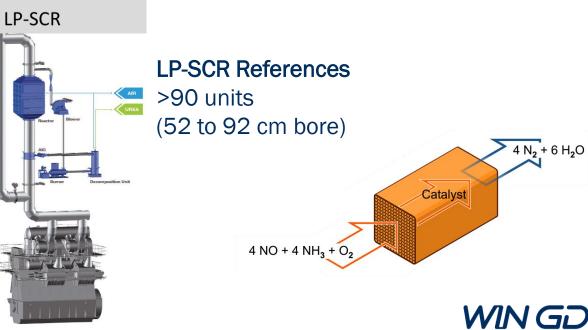
Fuel options	Sulphur content	SOx compliancy		NOx compliancy		Equipment needed to comply with	
		SECA Operation	Global Operation	NECA Operation Tier III	Global Operation Tier II	SO _x Rules	NO _x Rules
LNG	~0% S	Compliant	Compliant	Compliant with X-DF	Compliant	None w	ith X-DF
HFO	3.5% S	Scrubber to 0.1% S	Scrubber to 0.5% S	HP SCR	Compliant	Scrubber	HP SCR
HFO Ultra Low Sulphur	3.5% S 0.1% S	Compliant with 0.1% S Fuel	Scrubber to 0.5% S Fuel	LP or HP SCR with 0.1% S Fuel	Compliant	Scrubber	LP or HP SCR
Low Sulphur Ultra Low Sulphur	0.5% S 0.1% S	Compliant with 0.1% S Fuel	Compliant with 0.5% S Fuel	LP or HP SCR with 0.1% S Fuel	Compliant	None	LP or HP SCR


SCR – a proven marine technology


- For 40 years, selective catalytic reduction (SCR) technology is used in powerplants to clean exhaust gases from NO_x.
- After the year 2000 it found application also in truck and car industry ("AdBlue"), replacing the EGR technology to achieve lowest NO_x emissions
- Wärtsilä and WinGD have a long and wide experience with SCR systems with > 800 units ordered / installed in a large variety of engine applications:
 - Application of SCR for all Diesel and high-pressure gas engines
 - Marine (1/3) and stationary (2/3) applications
 - 4- and 2-stroke engine applications
- Application of SCR on large 2-stroke marine engines is a logic step

HP- and LP- SCR system overview





HP-SCR References >80 units (52 to 82 cm bore)

09 October 2018

Content

- 1) X-type Market update
- 2) X-DF Market update & Technology
- 3) X-DF operational experience

37 LNG-fueled vessels with X-DF

RT-flex50DF (5,7 cyl)

- 4 x 15k dwt Chemical Tanker, Sweden
- 4 x 1400 TEU Vessel, Germany / Finland
- 4 x 15k dwt Asphalt Carrier, Canada

X52DF (7,8 cyl)

- 2 x 125k dwt twin-screw Shuttle Tanker, Singapore / Norway
- 1 x 7000 unit PCTC

<u>X62DF</u> (6,7 cyl)

- 6 x 114k dwt Aframax Tanker, Russia
- 2 x 115k dwt Aframax Tanker, Singapore
- 5 x 114k dwt Aframax Tanker, Russia

X92DF (12 cyl)

• 9 x 22'000 TEU Container Vessels, France

39 engines on order, hereof 15 delivered, hereof 8 in operation

X-DF powered Aframax Tanker

- Owner Sovcomflot • Charter Shell 7X62DF • Main engine Power 13 800kW / 86 rpm 620 mm Bore 2 658 mm Stroke 9 215 mm Length Weight 435 tons • Fuel gas tank Type C 2 x 850 m3
- Vessel Ice 1A
- Seatrials July 2018

The order that will change the future 9 x 22 000 TEU C/V

Press Release of Nov. 7, 2017 http://www.cma-cgm.com/news/1811/world-innovation-cma-cgm-is-the-first-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-company-to-choose-liquefied-natural-gas-for-its-biggest-shipping-

Announced during COP 23 (UN Climate Change Conference) in Bonn, Nov 6 - 17, 2017

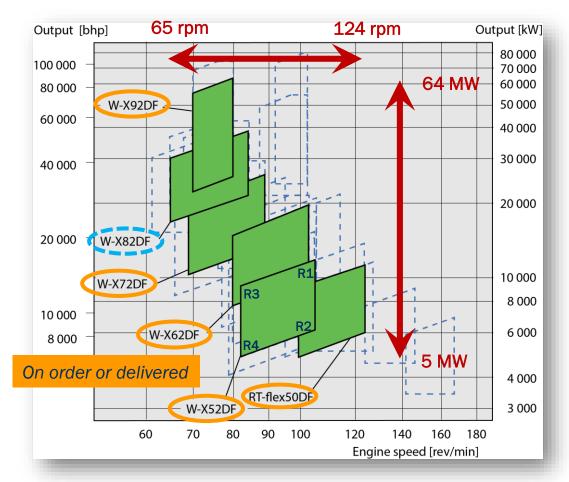
Main engine	12X92DF
Power	63 840 kW / 80 rpm
Bore	920 mm
Stroke	3 468 mm
_ength	23 000 mm
Neight	2 140 tons

Gensets Wärtsilä

6 x L34DF

Fuel Gas Supply System Wärtsilä

Fuel gas tank GTT 18 600 m3


WIN

46 LNG Carriers with X-DF

The X-DF engine program

Gas Tankers

- ✓ Small LNGC
- ✓ Large LNG Carriers: twin-screw 2 x 5/6X72DF Large LNG Carriers: single-screw 7X82DF

WINGI

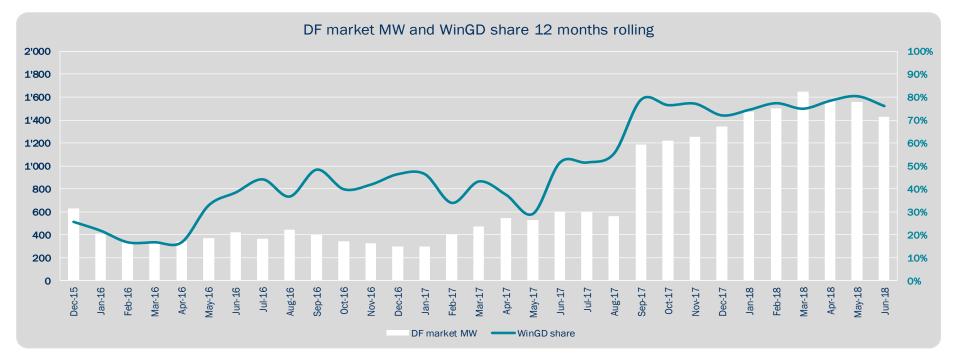
Container Vessels

✓ 1400 TEU Feeder CV
✓ 22 000 TEU Ultra Large CV

Tankers

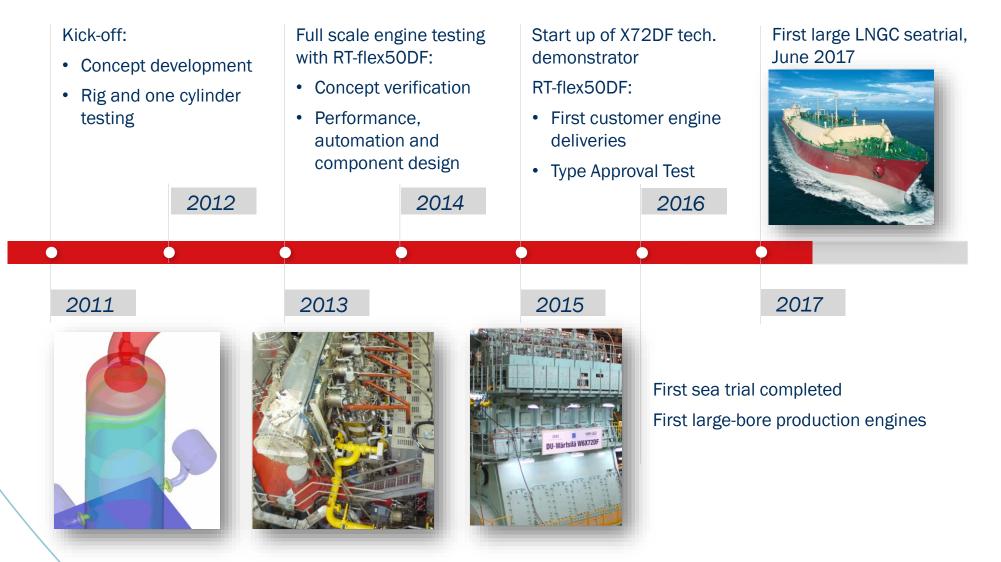
- ✓ Product (Chemical & Asphalt)
- ✓ Aframax
- Aframax Shuttle
 Suezmax
 VLCC

Bulkers Handysize Handymax Panamax Capesize VLOC

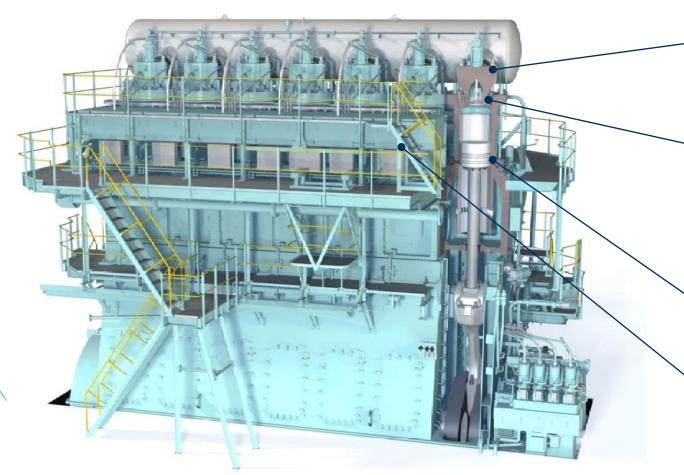

✓ PCTC, CONRO

09 October 2018

X-DF capturing LNG fuelled ships


The propulsion of choice!

- Captured majority share of DF market
- Propulsion of choice for majority of LNGC orders
- Simplicity appreciated for LNG-fuelled vessels


Development & introduction timeline

X-DF Low-Pressure key components

Key technologies that make the difference!

Micro-pilot common-rail system

• Low pilot-fuel consumption < 1%

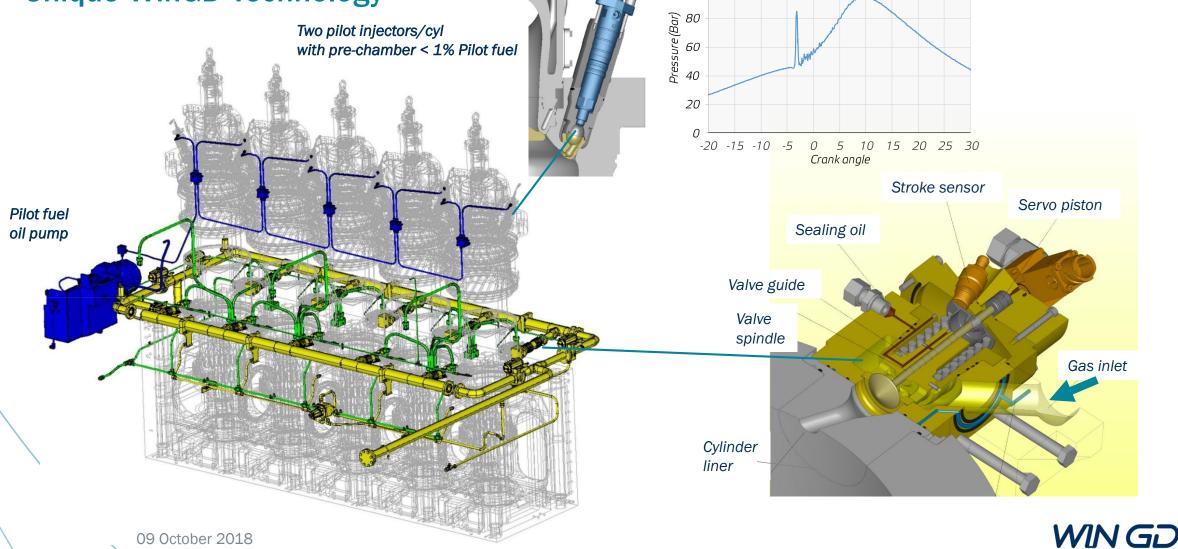
• Low NO_X

Pre-chamber technology

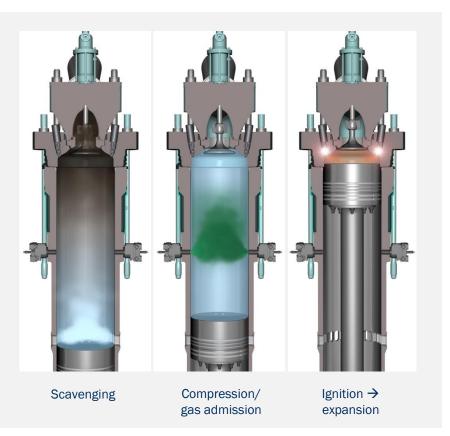
- Low NOx and THC / 'methane slip'
- Good combustion stability

Gas admission system

- Safe and relible gas admission &
- Simple sealing technology with low-pressure


Engine Control & Automation

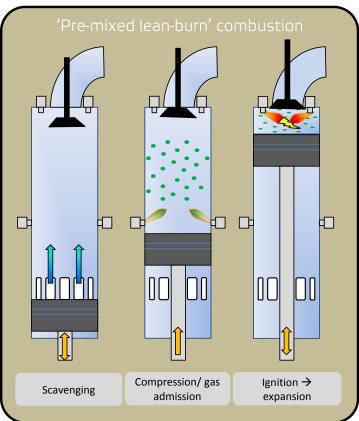
• Integrated engine control and safety


Gas admission & pilot oil injection

Unique WinGD Technology

100

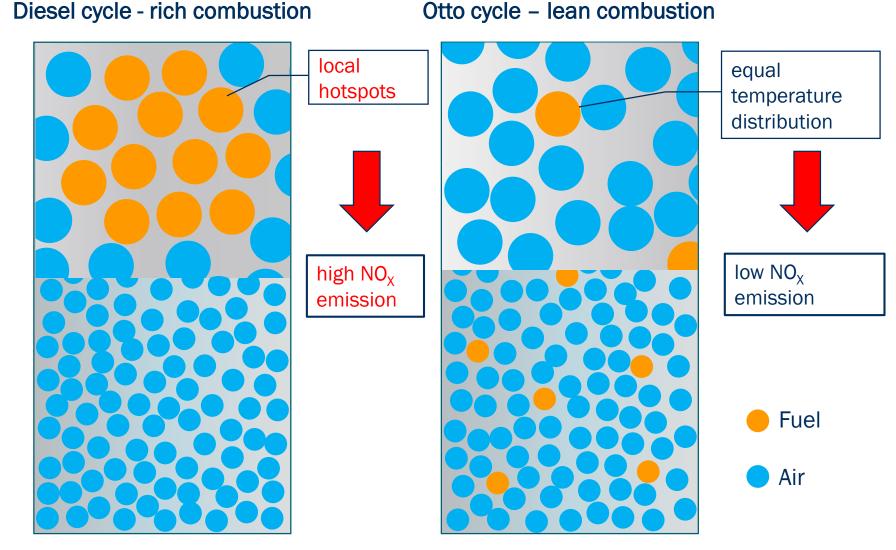
Combustion principle



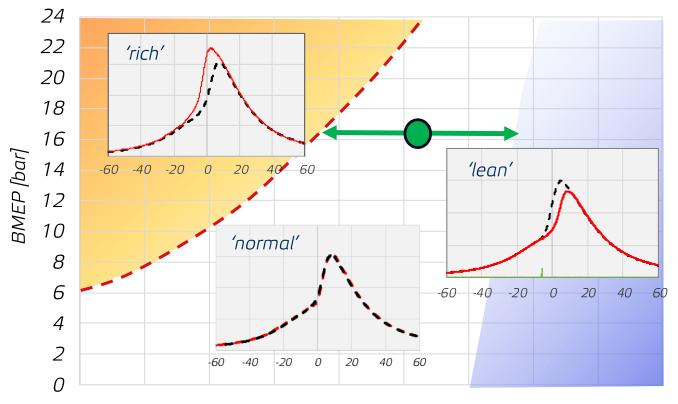
The main merits

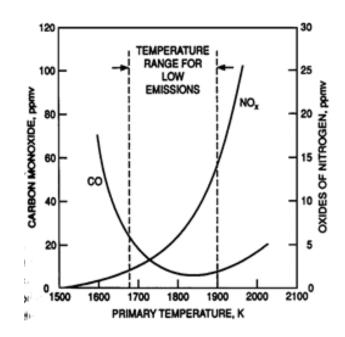
- Low gas pressure of 10 15 bar (depending on engine type and rating)
 - Simple and reliable gas supply system
 - Simple gas sealing
 - Wide selection of proven compressors / pumps
- Lean Burn'Otto' combustion means IMO Tier III compliance:
 - Without additional equipment (EGR/SCR)
 - Without additional fuel consumption
 - Without compromised component reliability
- Gas mode: Pre-mixed lean-burn 'Otto' combustion
- Diesel mode: Diesel process

Combustion: comparison Diesel & Otto cycle


00 Scavenging/ Pilot & HP gas Expansion compression injection

Diesel cycle


Combustion: comparison Diesel & Otto cycle



WINGD

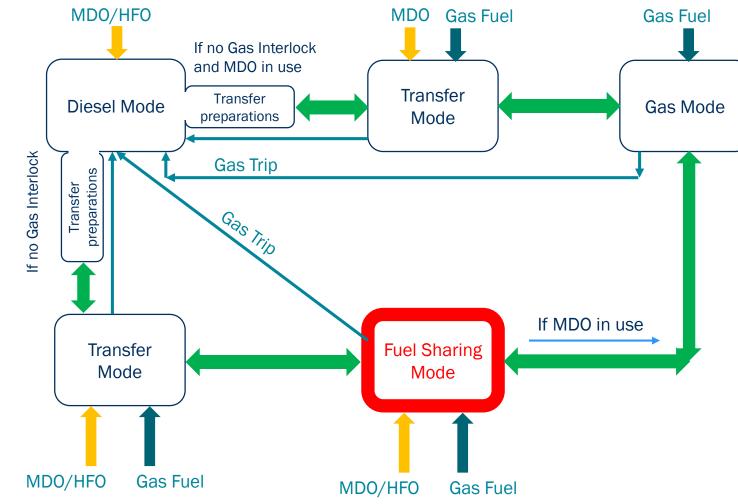
Fundamentals of combustion

- No 'radical' failure when crossing a limit
- Firing pressures, knocking and misfiring constantly monitored

Air/Fuel Ratio

Methane Number (MN) – operating range

- Typically, the MN of LNG is between 70...100
- Under ISO conditions and colder conditions full power output is available for ≥MN 65.
- Typically, operating area for low-speed engines is < 85% CMCR

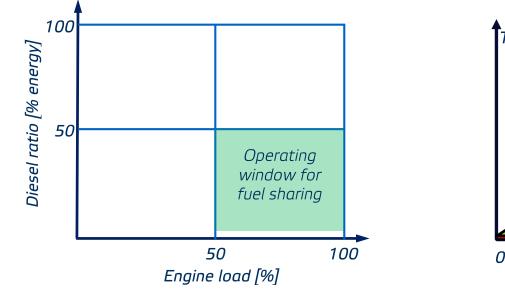

Maximum achievable power

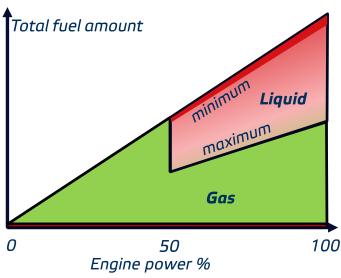
Fuel sharing LNG - HFO

Automation, operating modes

Fuel sharing Gas/HFO

Maximum fuel flexibility

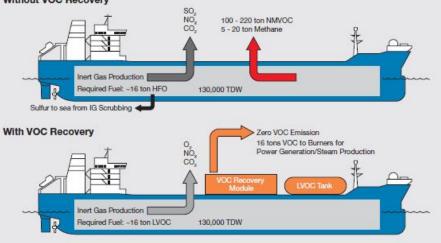

Fuel sharing, for LNGCs in particular:


- With adjustable ratio of gas to HFO. Can be used to balance between available boil-off gas and desired ship speed
- Control parameters are set in engine control system based on liquid/gas-ratio signal from RCS

Fuel sharing operating window:

- >50% engine power (to achieve high ship speed with insufficient NBOG)
- Up to 50% liquid ratio. With twin-engine installation, max 75% liquid ratio can be run

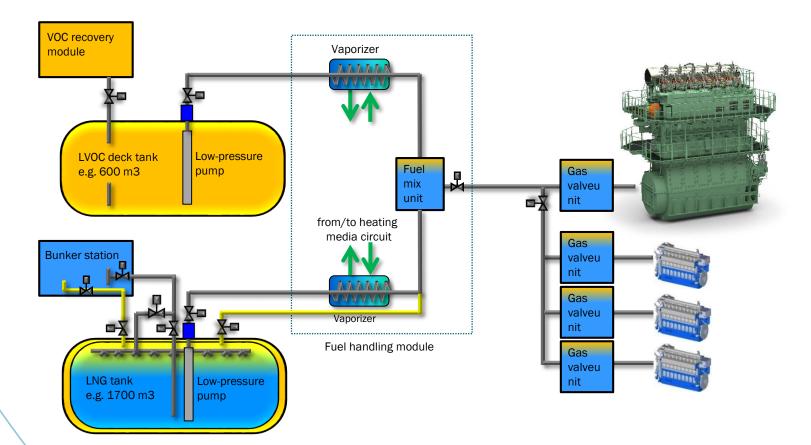
Feature Type Approval Tested and implemented on first LNGCs in service



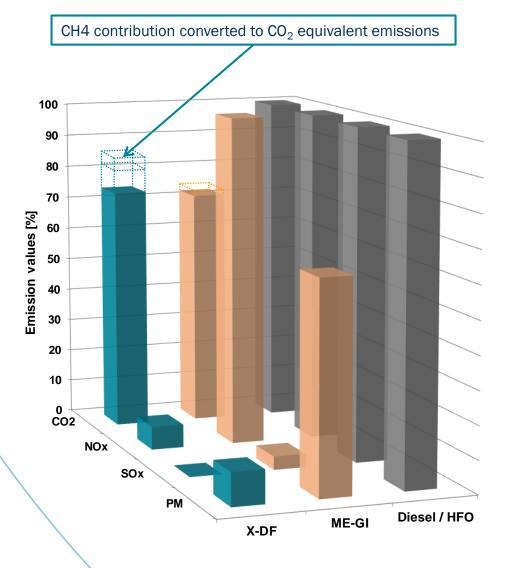
Volatile Organic Compounds as fuel in X-DF

- VOC consist of light- and heavy hydrocarbons in the crude oil which evaporate during ship loading operations
- VOC vapours can be liquefied (to LVOC) and stored in a tank on-board the vessel
- When using natural gas as a fuel, VOC can be blended into the gas and burned by the engine
- Considerable benefits:
 - Environmental: zero VOC-slip (greenhouse potential)
 - Commercial: VOC to substitute LNG for propulsion of the vessel
 - Particularly interesting for Shuttle Tankers with frequent cargo loadings
 - Application on Crude Oil Tankers of various sizes possible (Aframax, Suezmax, VLCC)

• Solution tested on lab engine during Q1/2018 in Trieste



Picture: Wärtsilä


Fuel sharing NG – VOC (Liquid Volatile Organic Compound)

- ✓ Use of low-pressure main- and aux engines
- ✓ No high-pressure LVOC and LNG pumps, evaporators, piping, etc
- \checkmark VOC in none supercritical condition
- \checkmark Low electrical power demand
- ✓ Low investment costs

X-DF emission overview

- Particle Matters (PM) very low due to 'lean-burn' Otto combustion with pre-chamber ignition
- Close to zero SOx due to clean natural gas
- NOx level far below Tier III due to 'lean-burn' Otto combustion
- CH4 emissions (Unburned Hydrocarbons) = 'Methane slip' is reducing the CO2 reduction with a conversion factor of 28 *) of -15% to -20% CO₂ equivalent compared to the diesel engine.
- X-DF contributes positively to reduce the total emissions compared to any engine operating in the Diesel process
- *): IPCC report 'Climate Change 2014', GWP factor 28

NECA & SECA emission regulation compliant

Content

- 1) X-type Market update
- 2) X-DF Market update & Technology
- 3) X-DF operational experience

X-DF Shop trials successfully completed

50 engines passed FAT and are partly delivered to ship yards

- 13 sets RT-flex50DF (in China & Japan)
- 17 sets W-X62DF (in Korea)
- 20 sets W-X72DF (in Korea)
- IMO EIAPP issued proving compliance with IMO Tier III NOx limits in gas operation
- Type approval testing (TAT) successfully completed on RT-flex50DF, X62DF and X72DF
- X52DF first project under manufacturing, bedding Oct 2018

X-DF Sea-Trials successfully completed

16 -with X-DF technology powered - vessels successfully completed sea trails

- Locations: China, Turkey and Korea
- Ship types:
 - One 14,000 m³ Coastal LNGC (no seatrial)
 - Four 15,000 dwt Chemical Tanker
 - Three 14,000 dwt Asphalt Carrier
 - Three 180,000 m³ LNGC with 2 x 6X62DF
 - Four 174'000 m^3 LNGC with 2 x 5X72DF
 - Two 115k Crude oil Tanker with 7X62DF
- Engine types: RT-flex50DF, X62DF, X72DF
- Fifteen vessels in service (August 2018)

Picture: 5RT-flex50DF powered chemical tanker

Picture: Twin 5X72DF powered LNGC (source Gaslog LNG)

Picture: 7X62DF powered Aframax (Ice class) tanker

First RT-flex50DF ever in operation

The early movers

"M/T Ternsund" in regular service in the Baltic / North Sea since August 2016.

- Approx. 12'500 running hours accumulated (Sept 2018), running more than 90% of time on gas (only port operation in diesel mode)
- All four vessels of the "Terntank" series are in operation with about 40'000 accumulated running hours totally

"M/T Damia Desgagnes"

• Handed over Aug 2017. In service on the Great Lakes, ~5000 rhrs

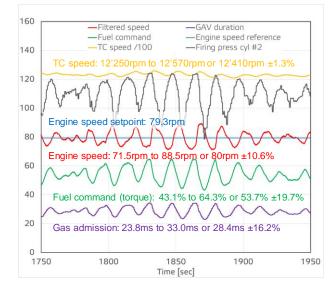
"M/T Mia Desgagnes"

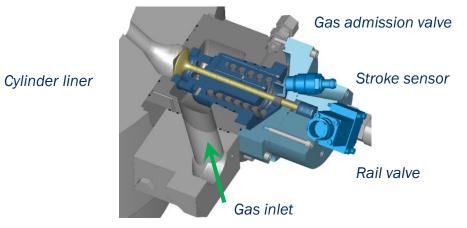
- Handed over Nov. 2017, operating on Great Lakes, about 3000 rhrs
- Ship 3 and 4 delivery in 2018

Nordic Container Vessel

• First 7RT-flex50DF vessel (Owner Nordic) expected delivery November 2018

Picture: Port of Gothenburg


Picture: Besiktas Shipyard



Findings on low-pressure technology

After 50'000rhs on RT-flex50DF engines

- 7 engines in operation with a total running hours of about 50'000
- Low-pressure gas technology works well:
 - Stable combustion process
 - Stable engine loading in rough sea
 - Very low load operation on gas down to 5% proven in service
- Optimisation of the DCC function for certain tuning combinations introduced:
 - For high load operation
 - At tropical conditions
 - For CPP operation
- Gas admission system working excellent:
 - No malfunction or gas leakage experienced
 - 2 cases of sticking GAV during testbed commissioning encountered (particle contamination rail valve), resulting in GT → safety system worked as designed, plus GAV filter introduced

RT-flex50DF liner lubrication & piston running

Teething problems resolved

Cylinder lubrication

Feed rate down to 0.7 g/kWh on BN25 cylinder lube oil seem feasible

A number of initial piston running issues on RT-flex50DF:

Leaking pilot injectors lead water enter cylinder

• Design changed \rightarrow resolved

Initially excessively fast loading ramps with CPP

• Settings adjusted to regular spec. \rightarrow resolved

Scavenge air pressure for combinator mode operation (CPP)


• Improved tuning introduced \rightarrow resolved

Reduced cylinder liner surface temp. to ensure stable cylinder oil lubrication film

• Tuning parameter adopted \rightarrow resolved

Recently one new case experienced \rightarrow under follow up

Almost 100% running on LNG

Start / Stop / Manoeuvring in Diesel - the rest in LNG mode

Overall X62/72DF fleet

Vessel references	Vessel Delivery	R/H After ship delivery	Gas mode R/H after 1st gas loading
LNGC Twin 6X62DF #1	29.07.2017	9000	7760
LNGC Twin 6X62DF #2	09.01.2018	5080	4000
LNGC Twin 5X72DF #1	09.01.2018	4550	2950
LNGC Twin 5X72DF #2	19.03.2018	3830	2850
LNGC Twin 5X72DF #3	30.03.2018	3640	2400
LNGC Twin 6X62DF #3	16.04.2018	3000	1850
Tanker 7X62DF #4	31.07.2018	740	-
LNGC Twin 5X72DF #4	31.07.2018	740	-
Total running hours (05/09/2018)		60'400	

The Gas availability (after first bunkering) is excellent; typically 97~98% of voyage running on Gas

Piston running behaviour on LNG carriers

Good running behaviour

In general X-DF LNGC's

- Running behaviour excellent
- Cylinder oil used for "lubrication & cleaning" not neutralization of Sulphur
- Regular piston underside sampling recommended (iron content, BN)

One specific case with piston running issue shortly after overhauling unit – reason under investigation.

Other LNGC in operation with excellent conditions.

Low BN (25) cylinder oil for Gas mode operation recommended, high BN (100) for HFO operation.

09 October 2018

Operational Experience: Summary

110.000 operating hours on WinGD low-pressure dual-fuel engines

- X-DF engines are running very well under real service conditions
- Teething problems noted and resolved, none of which being major
- Some operational issues on the first commercial engine RT-flex 50DF, resolved in time
- As of today, the RT-flex50DF engines are showing good operational behaviour
- X62DF and X72DF engines gained from experience gathered on RT-flex50DF. Only minor operational issues seen after 60'000 hours
- On LNGC's, engines run on gas for 97~98% of the total running hours! \rightarrow excellent availability of gas mode
- Diesel mode only used for berthing respectively engine starting after port call
- Operator feedback positive

2018 Awards & Nominations

Emissions Reduction Award

WinGD's X-DF technology was awarded the Marine Propulsion Emissions Reduction Award.

Emissions Reduction Award Winner

Marine Engineering of the Year

WinGD's lean burn pre-mixed combustion technology was awarded the **2017 Marine Engineering of the Year** by the **Japan Institute of Marine Engineering**

