

Turbocharger cleaning in operation & Engine performance analysis – Tekomar XPERTTM marine

NTIK – Hamburg, 16.11.2022

AGENDA

• Welcome

2

- Introduction to Accelleron
- Turbocharger cleaning in operation
- Engine performance analysis Tekomar XPERT[™] marine

$\bigcirc 1$

Introduction to Accelleron

Accelleron – the new face of ABB Turbocharging

• Together we inspire, innovate & exceed expectations – setting industry benchmarks for the benefit of all

- Accelleron is a strong name inspired by acceleration
- The name is based on the accelerated development of technologies for energy transformation and with this the accelerated growth we deliver to customers, to us and to investors
- Accelleron stands for global access and impact as well, be it with the global service network, with our dedicated professional service engineers or with leading industry solutions
- Finally, Accelleron is inspired by our **commitment to** excel, no matter what the challenge may be
- Building on a heritage of over 100 years in turbocharging, our business will continue its development as the global market-leader in its sector

5

Accelleron

117 years of customer care

- A global leader in the manufacture and maintenance of turbochargers for 500 kW to 80+ MW diesel and gas engines
- Leading-edge technology and innovation enables our customers to perform better and produce fewer emissions, even in the toughest terrains
- Approximately 200,000 Accelleron turbochargers in operation globally on ships, power stations, gen-sets, diesel locomotives and large off-highway vehicles
- Over 100 Service Stations in 50+ countries and a wide service portfolio providing tailored solutions with Original Parts and Original Service anytime, anywhere

Industries and applications we provide to

Mining

Rail

Off-highway trucks, excavators

Locomotives

• Power

 Peak and base load electrical power generation (EPG), back up power plants, nuclear power plants (NPP)

• Oil & Gas

 Onshore drilling, production and pipelines, offshore drilling, FPSO, transportation and supply & support vessels

Marine

6

• Container ships, tankers, bulkers, LNG carriers, dredgers, yachts, cruise & ferries, tugs, coastal & river shipping

11 man

Service Offering At a glance

Standard Offering

- Original Parts & Services
- Service Network
- Service of non-ABB turbochargers

• Service by exchange & repairs

- Exchange Units
- Customer Parts Exchange Program (CPEX)
- Laser cladding repair

Upgrades

7

- Upgrades / Retrofits

Service Agreements

- Maintenance Management Agreement Turbo UptimeCare
- Fixed Rate Service Agreement
 - Turbo LifecycleCare

Digital Customer Solutions

- Tekomar XPERT marine
- Tekomar XPERT for power plant
- Digital lifecycle solutions

Training & Consulting

CIAC / Condition Assessment

Turbo MarineCare

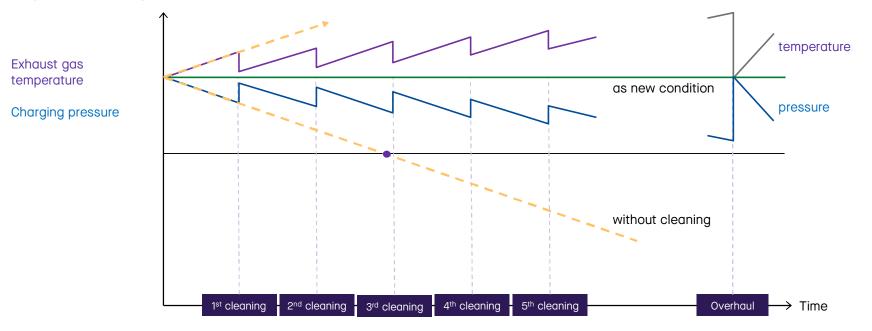
The world of Accelleron > 100 sales and service stations

2 • 1, Production and assembly Switzerland, China, India • 2. Licence production Korea, Japan • 3. Global HQ Engineering and R&D • 4. Joint Ventures JP: Turbo Systems United Co. Ltd. CN: ABB Jiangjin Turbo Systems Co. Ltd. 8

O2

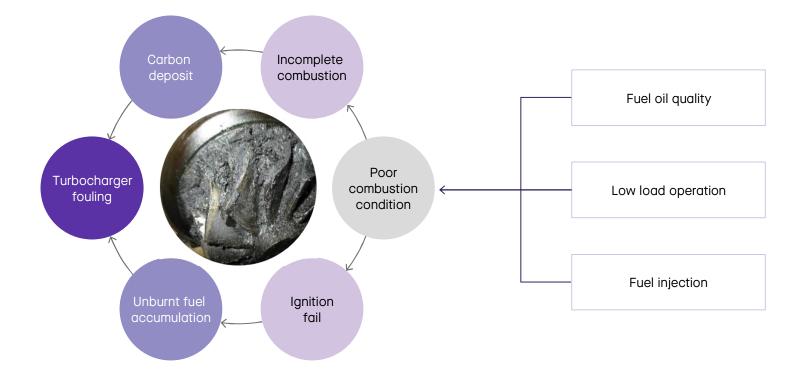
Turbocharger cleaning in operation

Turbocharger cleaning in operation Overview


Engine type		Fuel	
	Heavy fuel Oil HFO	Marine diesel oil MDO	GAS
Four-stroke engines	1	\checkmark	\checkmark
Two-stroke engines	\checkmark	\checkmark	\checkmark

A

Turbocharger cleaning in operation Benefits of cleaning


Regular cleaning improves the performance between overhauls

11

A//

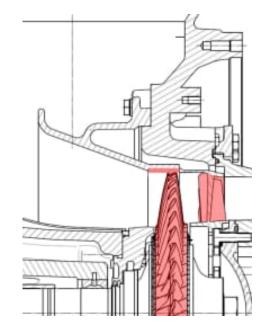
Turbocharger cleaning in operation Four-stroke engines and HFO operation

Turbocharger cleaning in operation Turbine and compressor cleaning

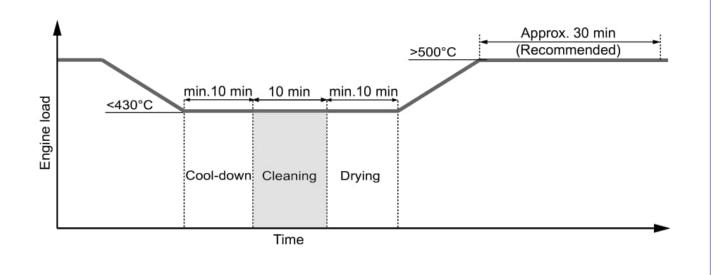
Turbine cleaning

- wet on four-stroke engines
- dry on two-stroke engines

Compressor cleaning


- wet on four- and two-stroke engines

Turbocharger cleaning in operation Components in exhaust gas and their impact


Ash	Hard residues, erosion and wear
Alumina + Silica	Hard residues, erosion and wear Al ₂ O ₃ + SiO ₂
Sodium	Corrosion in combination with other metals Na
Sulphur	Corrosion in combination with other metals s
Vanadium	High-temperature corrosion in combination with sodium V
Water	Corrosion effects H ₂ O
Carbon residue	Contamination of turbine surfaces

Turbocharger cleaning in operation Turbine contamination & cleaning issues

- The contamination builds up in a time-frame between 50-100 hrs and deteriorates the aerodynamic and thermodynamic properties of the turbine stage.
- The most contaminated parts are the nozzle ring, the turbine blades and the turbine diffuser (cover ring area).
- Other parts e.g., **gas inlet casing** are contaminated as well, but usually the impact is less and therefore there is less necessity for a cleaning.

Turbocharger cleaning in operation Cleaning process

Interval Every 50 ... 200 hrs

Principle / Effects Erosion

impacting droplets Solubility water solubility of contamination in water Thermal shock spalling of contamination

Engine load ≈ 10 ... 15%

Turbocharger cleaning in operation Turbine contamination - Examples

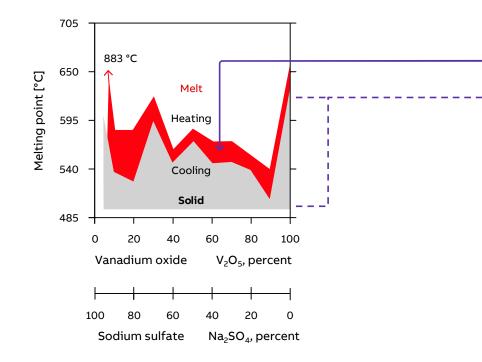
Gas inlet casing

- reduced η_{TC}
- higher fuel consumption

Nozzle-ring

- lower engine scavenging
- Increase of exh. gas temp. and thermal load

Turbine blades

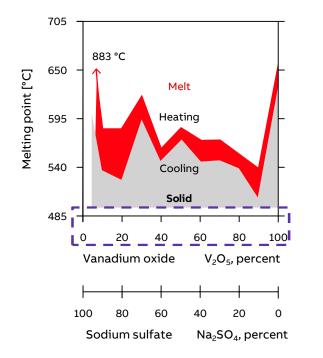

- Deterioration of aeroand thermodynamic properties
- reduced ηTC

Turbine-diffuser

- Rubbing of turbine blades

Turbocharger cleaning in operation HFO Background

Melting point in the system Vanadium oxide V_2O_5 – Sodium sulfate Na_2SO_4


Area where the consistency of the particle's changes from solid to liquid/ melt

Temperature range of four-stroke engines

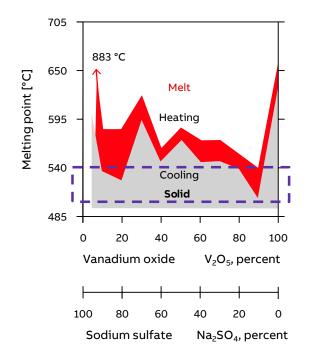
Critical parameters

- V₂O₅/ Na₂SO₄ ratio
- Exhaust gas temperature level
- Certain content of Vanadium (V) and Sodium (Na)
- Temperature level influences consistency of particles

Turbocharger cleaning in operation HFO Experiences in different temperature ranges I

Solid range (≤ 500 °C)

Hardly any contamination


Erosion impact possible

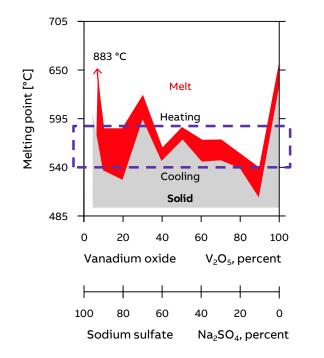
<u>Dry cleaning</u> at normal or even extended intervals is sufficient

Mechanical cleaning during regular inspection intervals is sufficient

Only little performance deterioration due to fouling, wear and tear

Turbocharger cleaning in operation HFO Experiences in different temperature ranges II

Range with mainly solid/ partly melt particles (500 – 540 °C)


Contamination build up is likely in the exhaust duct and on turbocharger components

<u>Wet cleaning</u> at normal – or maybe reduced intervals needed

<u>Mechanical cleaning</u> during regular or in certain cases reduced intervals needed

Performance deterioration due to contamination build-up to be expected

Turbocharger cleaning in operation HFO Experiences in different temperature ranges III

Range with mainly melt/partly solid particles (540 – 580 °C)

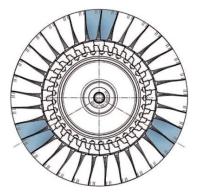
Strong contamination build up in exhaust duct and on turbocharger components

Well developed wet cleaning required

Cleaning at reduced intervals

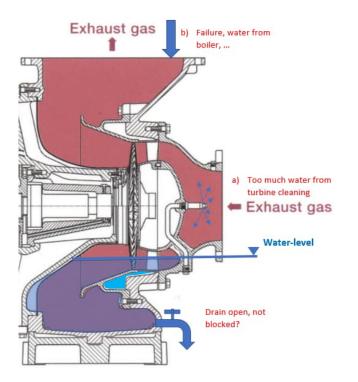
Mechanical cleaning in reduced intervals likely

Performance deterioration to be controlled by optimized cleaning, proper installation and professional operation


Turbocharger cleaning in operation Coated turbine blades combat accelerated tip wear

Deposits on turbine diffusor

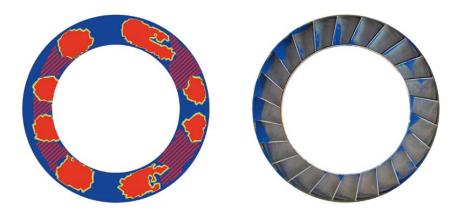
- rubbing of turbine blades
- > wear, loss of turbine diameter
- > exh. gas bypassing the turbine
- $\succ \quad \text{reduction of } \eta_{\text{TC}}$


Coated blade tips

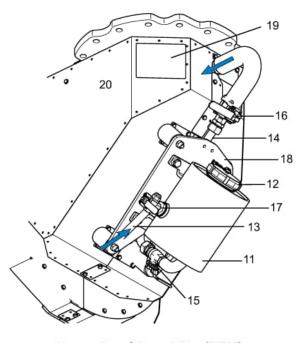
- 3x 2 hard tipped blades
- 120° intervals around the turbine wheel
- 4-stroke applications, only
- DF engines as well

After 12.000 hrs in operation

Turbocharger cleaning in operation Too much water ingress in turbine



Turbocharger cleaning in operation Development of effective turbine cleaning systems


Water distribution on a nozzle ring

- Left: result of a computer simulation (in red/hatched: cleaned area)
- Right: experimental results. The blue paint denotes the nonwashed regions. The results correspond with the cleaning effects in the field.

Targets

- Homogeneous water distribution numerous possible designs of cleaning nozzles and water injection conditions are simulated
- Impact of water on surfaces
 Cleaning system considers thermal shock due to wetted areas and avoids any damage to parts

Turbocharger cleaning in operation Turbine dry cleaning - Two stroke engines

Product	Quantity [dm ³]
A165-L	1.0
A170-L	1.5
A175-L	2.0
A180-L	2.5
A185-L	3.0
A190-L	3.5

- 11 Granulate container (51702)
- 12 Cover cap (51703)
- 13 Pressurised air supply [4 ... 7 bar]
- 14 Piping
- 15 On-Off valve [closed] (51705)

- 16 Protection valve [closed] (51713)
- 17 Pressurised air valve [venting] (51704)
- 18 Plate
- 19 Cleaning instructions (51717)
- 20 Gas inlet casing, insulated

Interval

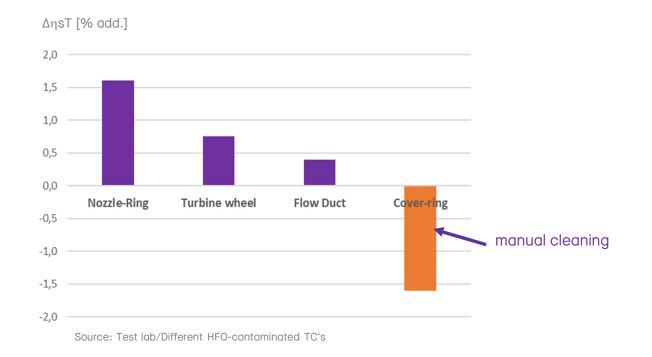
HFO: every 50 hrs Gas/HFO: increase to max. 150 hrs

Principle

Dirt removed by the mechanical action of impacting solids (granulate).

Material

Natural core granulates Soft-blast media Activated carbon particles Size: 1,2 ... 2,0 mm Specific weight: ≤ 1,2 kg/dm³

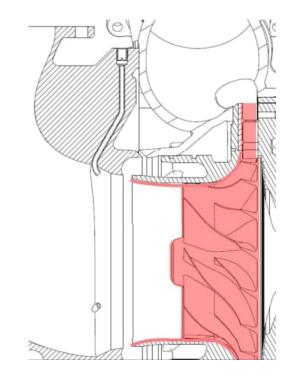

Operating state

Engine load 5 ... 85%

Repeating cleaning

max. 3 processes

Turbocharger cleaning in operation Magnitude of efficiency gain after turbine cleaning


Turbocharger cleaning in operation Compressor contamination – Examples

Turbocharger cleaning in operation Compressor cleaning issues

- The sensitive parts regarding contamination are the insert wall, the compressor wheel and the diffuser.
- The **thermodynamic loss in** compressor efficiency is in the range of **2...3%**.
- Beside the thermodynamic degradation of the compressor stage there are also corrosion effects, which cannot be neglected.
- The cleaning mechanism is a combination of water <u>droplets impact</u> and <u>dissolving</u> the contamination layer.
- Washing effect is influenced by the flow field of the compressor. **Poor water, only**.

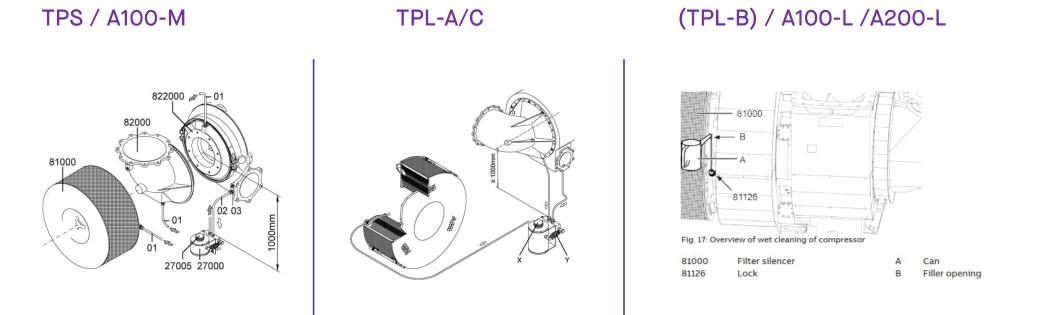
Turbocharger cleaning in operation Compressor cleaning wet on four- and two-stroke engines

Product	Contents of cleaning medium vessel [dm ³]			
TPL69-A	0.4			
TPL73-A	1.0			
TPL77-A	1.0			

Product	Quantity [dm ³]		
A165-L	2.0		
A170-L	2.0		
A175-L	3.0		
A180-L	3.0		
A185-L	3.0		
A190-L	3.0		

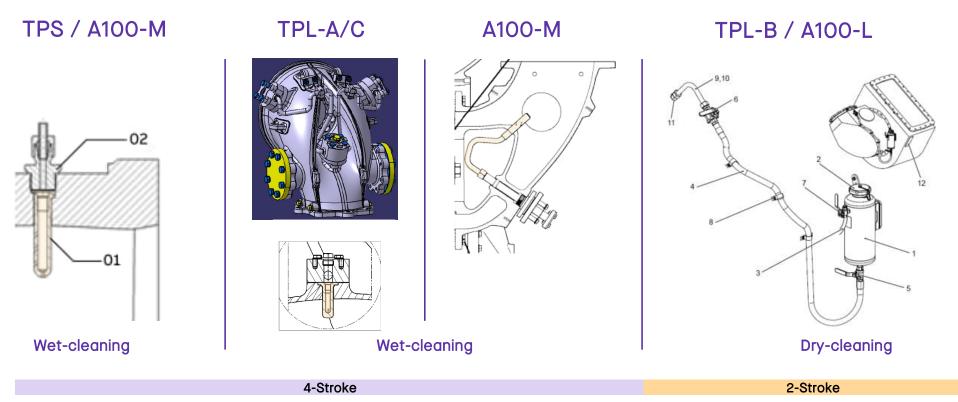
Interval

Every 25 ... 100 hrs

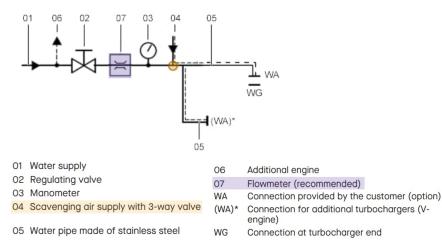

Principle / Effects

- Impact of droplets
- Only clean fresh water

Engine load


50 ... 85%

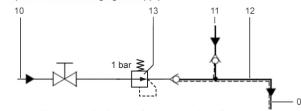
Turbocharger cleaning in operation Wet cleaning equipment - Compressor



Turbocharger cleaning in operation Cleaning equipment - Turbine

Turbocharger cleaning in operation Operation Manual: Layout & parameter for wet cleaning of turbine

Even with the water pressure being observed, the volume of water may be too low due to a blockage. Accelleron recommends installing a water flowmeter.



Product	Temperature before turbine before clean- ing [°C]	Maximum temperat- ure before turbine during cleaning [°C]	Water volume flow V _w [dm³/min] ¹⁾	Injection time [min]		
A130	350 430	530	4.0	10		
A135	350 430	530	5.5	10		
A140	350 430	530	8.5	10		
A145	350 430	530	12.0	10		

Table 16: Wet cleaning of turbine, parameters

¹⁾ Corresponds to a water pressure p_{wr} of 1.5 bar (overpressure compared to atmosphere)

Layout of the scavenging air supply

- 04 Scavenging air supply to 3-way valve
- 10 External compressed air (optional)
- 11 Charge air after cooler
- 12 Scavenging air pipe
- 13 Pressure relief valve

32

Turbocharger cleaning in operation

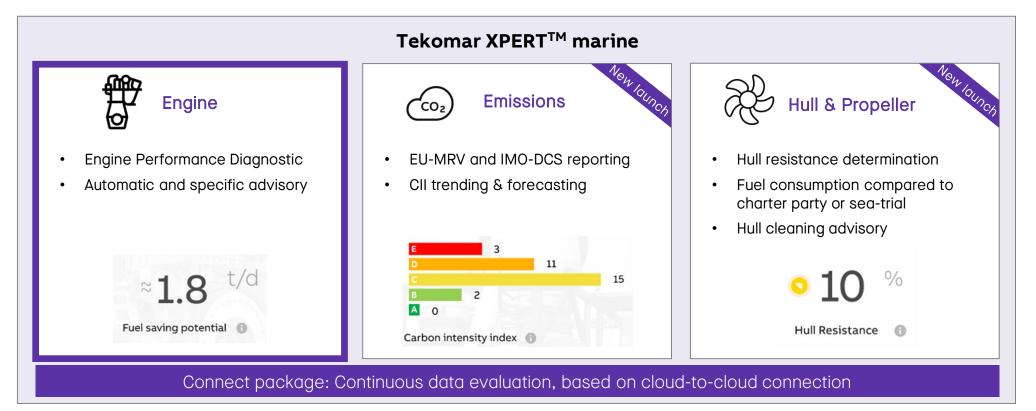
Engine type		Fuel		
	Heavy fuel oil HFO	Marine diesel oil MDO	GAS	
Four-stroke engines	Regular wet cleaning	Occasionally wet cleaning	Usually not required ¹	
Two-stroke engines	Regular dry cleaning	Occasionally dry cleaning	Usually not required ¹	

¹ Depending on gas – and lube oil composition

A/

O3

Engine performance analysis – Tekomar XPERTTM marine



Tekomar XPERT[™] marine

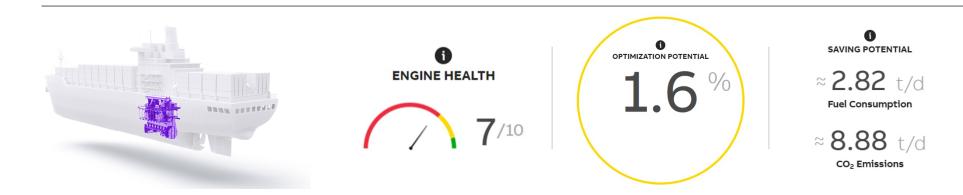
Extended product presentation

Α/

We developed Tekomar XPERTTM marine: A complete suite for sustainability, efficiency and compliance

The Engine module assesses engine performance and delivers advisory

What is it?


 Software that diagnoses engines performance and delivers advisory on how to optimize them across your fleet

How does it work?

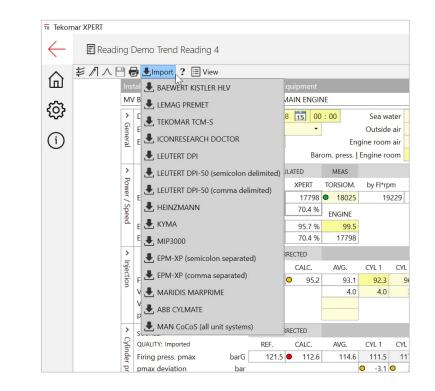
- Applies to **any engine** make, type, fuel and age, **main and auxiliaries**
- Automated or manual data input
- Compares engine performance to shop test (ISO corrected)

What does it deliver?

- Engine performance diagnostic
- Instant optimization advisory
- Benchmarking for the fleet

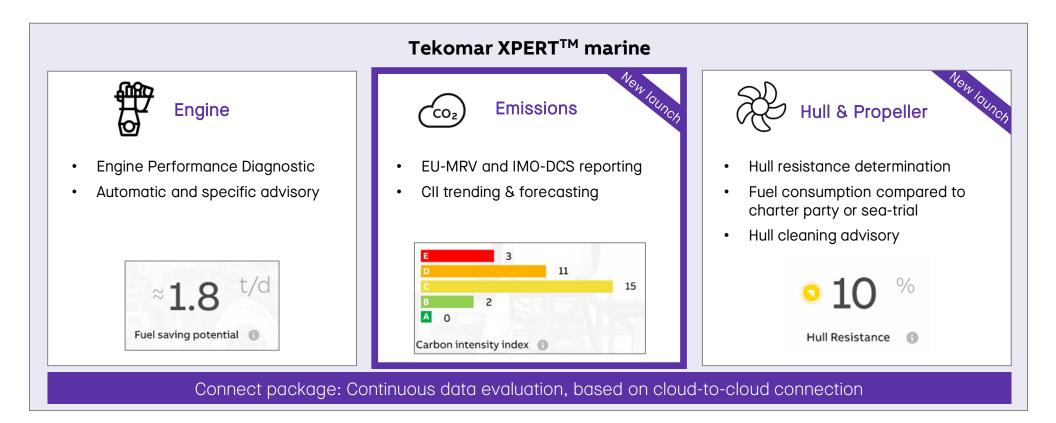
What is our Desktop App?

٠


Data input/import

Evaluation of engine performance

Diagnostics with advisory and savings


Comparison of readings and vessels

- Manual data input by crew or data import from third party devices or monitoring systems
- Actual engine performance is compared to shop test reference values (baseline performance)
- Instant quantification of fuel oil saving potentials and advice on how to improve performance including specific measures
- Comparison of readings for equipment across the entire fleet
- Data trending regardless of engine
 power

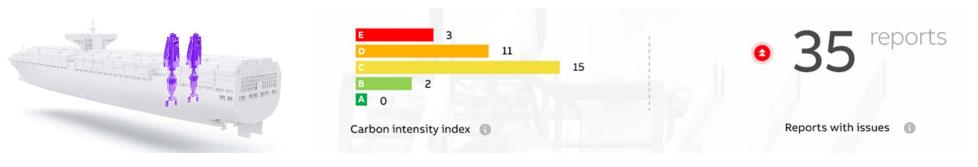
Slide 38

Tekomar XPERTTM marine - Emissions module

-co2

The Emissions module supports shipping companies in the path to sustainability

What is it?


 The Emissions module calculates and forecasts your CII and generates automatic, pre-validated MRV and IMO-DCS reports per voyage

How does it work?

- Reports are automatically generated using continuous data⁽¹⁾
- Reports are **pre-validated**, using methodologies in line with IMO, EU
- Future CII rating is simulated, based on adjustable key parameters and historic operational data

What does it deliver?

- Automated, pre-validated emissions reporting
- Interactive CII trend and forecast

Tekomar XPERTTM marine – Emissions module

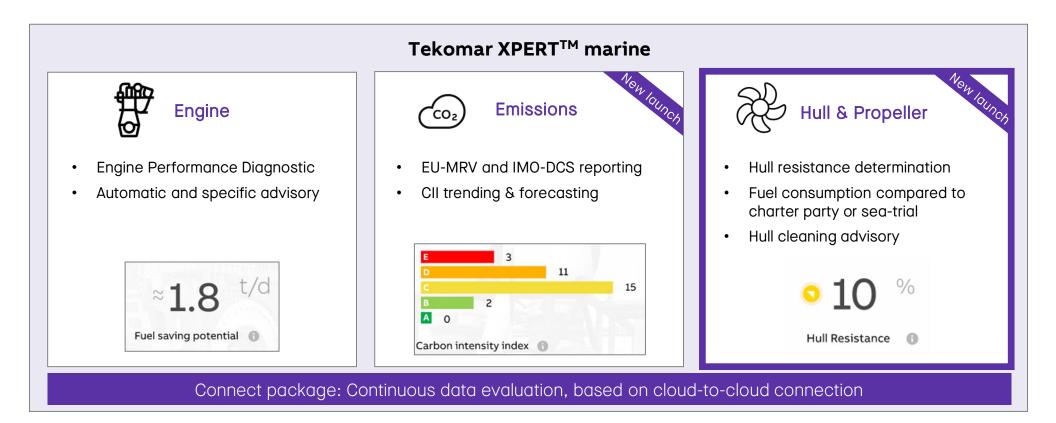
Emissions

Dashboard

Emission reporting (MRV, DCS)

• KPIs available at vessels, fleets

• KPIs for CII and Reporting


and company level

Issues

- Listing of automatically detected voyages per vessel with associated CII rating
- In case of problematic report status editable by crew
- CII Forecasting • Prediction of future CII rating (end of year and future years) based on operation pattern and adjustable key parameters

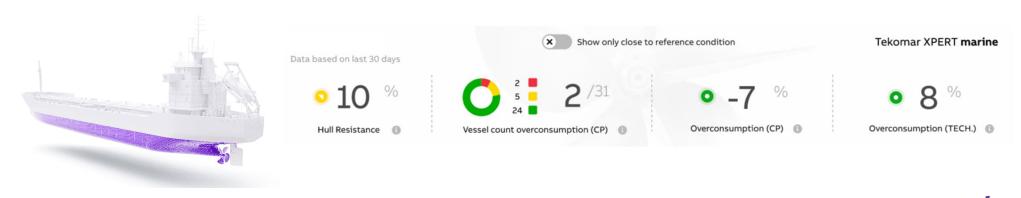
Acce//eron	LOREKA Customer Portal Tekomar XPERT marine Demo: Emissions / H&P	\$	Oliver.heinrich@accelleron-industries.com
EBFORMANCE Pleet performance Emissions ^ Reporting Forecasting Hull & Propeller ~	Tekomar XPERT marine Demo: Emissions / H&P Data based on year to date	• 52 Reports with issues	Tekomar XPERT marine
Contact us	Emissions Overview		Type here to search Q
	Fleets	instaliations Cil RATING	REPORTS WITH ISSUES
	Explorers Installations	Ē	0 14
	Startships Instalations	Ē	38
- Compact view	A COPYRIGHT 2022 Turbo Systems Switzerland Ltd		Terms And Conditions. . Tekomar XPERT Terms and Co

Tekomar XPERT[™] marine - Hull & Propeller module

What is Tekomar XPERT[™] marine - Hull & Propeller module?

What is it?

The Hull & Propeller module assesses the condition of hull and propeller:


- Determines the overconsumption compared to technical and charter party reference
- Offers **advisory** on maintenance task timing

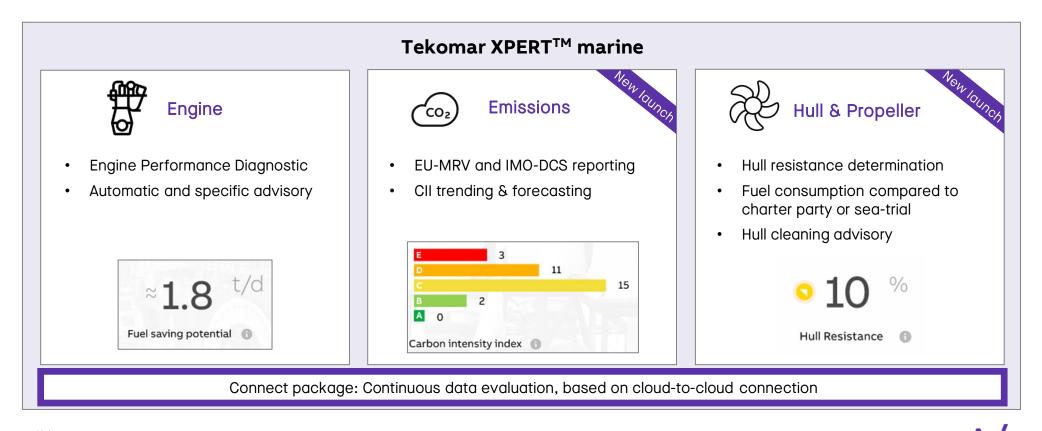
How does it work?

- Calculates the hull resistance of a vessel based on the additional power required to run at a specific speed compared to technical reference
- Deviation of consumption is compared to charter party reference or technical reference

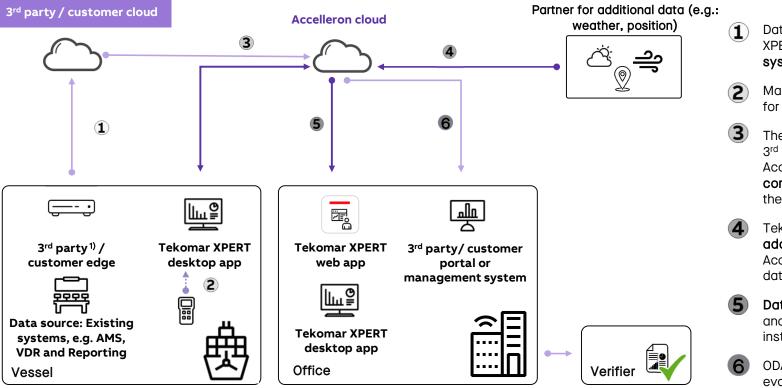
What does it deliver?

- Hull resistance KPIs and trends
- Assessment of overconsumption based on reference values
- Hull cleaning advisory

43 Confidential – do not distribute



A/


Tekomar XPERT[™] marine – Hull & Propeller module

	KDIe velste dite buill and nee neller	Acce//eron	Digital Services Customer Port	tal			4 0 ‡	e steve. perform	ance@ch.abb.com 🗸 🔁
Hull & Propeller	 KPIs related to hull and propeller overconsumption Comparison to charter party and 	PERFORMANCE	Tekomar XPERT marine Demo: Emis Data based on last 30 days	ssions / H&P	(X) S	how only close to reference co	ndition		Tekomar XPERT marine
Dashboard			• 22.8 ⁹ Huit resistance •		Vessel count overconsumption (GP)		• 3.3 [%] Overconsumption (CP) •		34.4 %
	Speed vs consumption curves for observer reference including	Hull resistance	Installations Overview	Fleets	1-			Type	there to search \mathbf{Q}
Speed consumptioncharter reference including information of applied corrections	RESOURCE CENTER	FLEET/INSTALLATION Explorers 2 Installations	① HULL RESISTANCE ○ 16.6 %	OVERCONS. (CP)	OVERCONS. (TECH.)	ACCUMULATED OVERCONS.	CLOSE TO REFERENCE	O DATA QUALITY 79.4 %	
		Downloads	Startships 2 Instalations	0 29.0 %	• 73 %	0 42.4 %	22894.9 t	38.1 %	81.5 %
Hull resistance advisory	 Calculation of hull resistance to reference and trendline Hull cleaning advisory based on variable input parameters like hull cleaning cost, fuel cost and speed 							an under Lord 1. Hann eine	

Connectivity of Tekomar XPERTTM marine

Connectivity Scheme of Tekomar XPERT[™] marine

Data collection onboard: Tekomar XPERT marine utilizes **existing systems**, typically from AMS + VDR¹⁾

Manual data input via desktop app for the Engine module, if necessary

The data transfer from onboard via 3rd party customer's cloud to the Accelleron cloud. Accelleron is **compatible with vast majority** of them

Tekomar XPERT marine utilizes additional data sources from Accelleron Partners to enhance the data set from your system

Data analytics, visualization of KPIs and enabling ease of reporting and instant forecasting

ODATA API for integration of evaluated Tekomar XPERT marine data into other systems

Slide 46 1) Please note: Tekomar XPERT[™] marine does not provide any additional items such as onboard data collection or sensors.

Thank you !

Olaf Stolp Sales Manager – Digital Solutions Germany

Turbo Systems Germany GmbH M: +49 151 121 04 750 olaf.stolp@accelleron-industries.com Am Neuländer Gewerbepark 3 21079 Hamburg accelleron-industries.com Rolf Eiringhaus Regional Technical Manager

Turbo Systems Germany GmbH M: +49 170 852 41 rolf.eiringhaus@accelleron-industries.com Am Neuländer Gewerbepark 3 21079 Hamburg accelleron-industries.com