

Source Clarksons

Class	01 Mar 19		Fleet Growth	
Societies	No.	m.GT	Year-o	n-Year
IACS Members				
DNV GL	8,781	269.9	DOWN	-2.2%
Nippon Kaiji Kyokai	8,378	251.8	UP BY	0.9%
American Bureau	7,291	236.6	UP BY	1.5%
Lloyd's Register	6,697	216.9	UP BY	1.5%
China Class Society	4,734	120.7	UP BY	9.9%
Bureau Veritas	7,638	114.1	UP BY	2.5%
Korean Register	2,387	64.1	DOWN	-2.4%
Registro Italiano	3,444	40.3	UP BY	8.7%
Indian Register	1,360	11.6	DOWN	-8.7%
Russian Register	2,382	11.2	UP BY	4.3%
Polski Register	337	4.7	UP BY	38.9%
Croatian Register	301	1.7	DOWN	-1.2%
Total IACS Member	52,709	1,284.1	UP BY	2.2%
Share of World Tota	55%	95%		

Source Clarksons

General Review of Main Business – Fleet Growth

In Sep. 2018 CCS Ocean Going Fleet exceeded **100 million** GT

Fleet Growth (2001- 2019.Feb)

The Youngest Ocean- going Fleet of IACS Members(Age. Years)

Fleet Growth (2001-2019.Feb)

CCS Ocean –going Fleet Flag (by GT)

Fleet Growth (2001-2019.Feb)

General Review of Main Business – Service Network

General Review of Main Business –Flag States Authorization

- > Authorized by 45 states and regional governments.
- > 2018 New statutory authorization obtained from Bangladesh

CCS Europe

There are Hamburg and Athen branches with 14 offices, 44 surveyors

Hamburg Branches

Hamburg, Düsseldorf, Stuttgart, London, Rotterdam, Gothenburg, Bergen, Stockholm, Gepenhagen

Athen Branches

Athen, Milan, Barcelona, Paris, <u>Istanbul</u>

First Transocean Transport of LNG ISO Tanks and Related Experiments: *Practice & findings*

Dr.-Ing. Leshan ZHANG China Classification Society Europe GmbH Iszhang@ccs.org.cn CCCS CHINA CLASSIFICATION SOCIETY 中 医船 级 社

 $Copyright \, {\rm \ensuremath{\mathbb C}} \, China \, Classification \, Society$

1. Brief on LNG ISO tank container

2. Drivers & cases of LNG transport in ISO tanks

- 3. Governing Regulations & Standards
- 4. Practice of 1st trans-ocean transport and experiments
- 5. Findings and conclusion

ISO 1496 - 3 Standard

Frame body

Frameless body

Design Code	RID/ADR IMDG regulations for ISO-type T75; ASME code 8 div1
Regulations	IMDG / RID / ADR / TIR / CSC / UIC / TC impact / US DOT / Frame ISO 1496/3
Гуре	T75 UN Portable Tank, ML1 Frame Design

40 foot

Dimensions (l,w,h)	12192 x 2438 x 2591 mm	40 ft x 8 ft x 8 ft 6 inch
Tare weight	12.500 - 13.200 kg	27.600 - 29.100 lbs
Max Gross Weight	36.000 kg	79.400 lbs
Capacity	45.500 - 47.000 L	12.000 - 12.400 gallon [US, liquid]
MAWP	10 Barg	145 PSIG
Temperate Range	-196 to +20 Celsius	-321 to 68 Fahrenheit

20 foot

Dimensions I x h x h	mm	6 058 x 2 438 x 2 591
Code Type		22T7
Туре		UN T75
Approvals		CSC; UN; RID/ADR; IMDG
Maximum working pressure	bar	10,3
Tare weight	kg	7400
Maximum gross weight	kg	36000
Suitable for		LIN; LNG
Storage capacity nominal	Itr	19.720
Flange connection		DN 65 PN 40

Typical Components for a Vacuum Insulated Tank Container

Typical Components for a Vacuum Insulated Tank Container

Outer shell

ISO 1496 - 3 Standard

Static test

Test No. 1 - Stacking Test No. 2 - Lifting from the four top corner fittings Test No. 3 - Lifting from the four bottom corner fittings Test No. 4 - External restraint (longitudinal) Test No. 5 - Internal restraint (longitudinal) Test No. 6 - Internal restraint (lateral) Test No. 7 - Rigidity (transverse) Test No. 8 - Rigidity (longitudinal) Test No. 9 - Load-transfer area test Test No. 10 - Walkways (where provided) Test No. 11 - Ladders (where provided) Test No. 12 - Pressure test

Dynamic longitudinal impact test

1. Brief on LNG ISO tank container

2. Drivers & cases of LNG transport in ISO tanks

3. Governing Regulations & Standards

4. Practice of 1st trans-ocean transport and experiments

5. Findings and conclusion

Drivers for transport of LNG in ISO tanks?

The advantages:

- One contract;
- One insurance policy;
- One-time payment;
- <u>"Door to door" service;</u>
- Low initial investment by using of existing containerships and ports.

- Make LNG trading more flexible, more players can come into LNG game;
- supplying final LNG consumers as an alternative for gas delivered by conventional piping. This is the method of gas delivery diversification which guarantees the energy independence;
- Elaborate the LNG value chain. (artery + blood capillary)

Typical Applications

Virtual pipeline

Marine application

Portable fuel tank

Pilot Projects — China

Dongguan-Haikou

Weihai-Dalian

Pilot Projects — America

Time	2014.3
Seller	Clean Energy
Buyer	Hawaii Gas
Transportation mode	Truck + containership (2231 nm) + Truck
Itinerary	Boron-Los Angeles-Hawaii-Honolulu
Application	Power supply
Planning number	38 containers

TimeSince 2014, Multi-year contractSellerCrowley MaritimeBuyerCoca-colaTransportation modeTruck + containership (1144 nm) + TruckItineraryJacksonville-Puerto RicoCarrierCarib Energy (Crowley Maritime)ApplicationFactory production

CCCS CHIMA CLARSHEATION BOCKETY 中国船毁社

Pilot Projects — Portugal

Time	2014.4
Seller	Gaslink Gas Nature (Sousa Group)
Buyer	Madeira Electricity Company
Mode of transportation	Truck(150km) + containership(960km) + Truck(40km)
Itinerary	Portugal Sines-Madeira
Application	Power supply
Producer	Chart
Number & capacity	14 Containers, 500m ³ in total, 2 layers
Contract time	8 years
Haul cycle time	12 days
Annual consumption	30,000 tons

1. Brief on LNG ISO tank container

2. Drivers & cases of LNG transport in ISO tanks

3. Governing Regulations & Standards

4. Practice of 1st trans-ocean transport and experiments

5. Findings and conclusion

Regulation framework for LNG shipping

Regulation framework for LNG shipping in ISO tanks

Doubts and problems

REQUIREMENTS

- holding time: for a specified degree of filling, from establishing the initial filling condition until the pressure has risen, due to heat leak, to the set pressure of the pressure-limiting device. (ISO 21014)
- The actual holding time shall be calculated for each journey in accordance with a procedure recognized by the competent authority, on the basis of the following (IMDG 4.2.3.7):
 - the reference holding time for the refrigerated liquefied gas to be transported
 - the actual filling density and pressure;
 - the lowest set pressure of the pressure-limiting device(s)

COMMOM PRACTICE

- LN2 test to get the static boil-off rate;
- Conversion to get the static BOR for LNG;
- Calculate the reference holding time based on thermal equilibrium

DOUBTS & PROBLEMS

- The calculation is based on LN2 test and several times conversion, so the result is accurate and reliable enough?
- The test and calculation is only for static condition, so what about the dynamic condition ?

- 1. Brief on LNG ISO tank container
- 2. Drivers & cases of LNG transport in ISO tanks
- 3. Governing Regulations & Standards
- 4. Practice of 1st trans-ocean transport and experiments
 - 5. Findings and conclusion

Scheme design

Trail transport (Europe-China)

 4 40 feet ISO tanks (No.SIMU810001, No.SIMU810007, No.SIMU810019 and No.SIMU810020) shipped by Maersk Line;

 Each tank equipped with an intelligent system capable of monitoring and recording real time temperature, pressure and level data.

Ningbo

Antwerp

Flow of the trail transport

Land test to simulate stacking in container yard

Empty tanks trailered to site

Deployment and LNG filling

Settlement

Monitoring and record

Safety watch

Emergency drill

Lab test to simulate the extreme condition

Gas flow meter and recorder

Lab test to simulate the extreme condition

Sea states simulated by the sway bed

Sec state Encountaring Ship r		Ship moti	on parameter		
Condition	level	probability	Amplitude (degree)	Frequency (Hz)	Motion excitation
LC 1	3	10 ⁻¹	0.5	0.1	$\theta = -\frac{\pi}{180}\cos(0.2\pi \cdot t)$
LC 2	4	10 ⁻¹	1	0.09	$\theta = -\frac{\pi}{45}\cos(0.18\pi \cdot t)$
LC 3	5	10 ⁻¹	6	0.08	$\theta = -\frac{11\pi}{180}\cos(0.16\pi \cdot t)$
LC 4	8	10-4	11.2	0.06	$\theta = -\frac{1\pi}{18}\cos(0.12\pi \cdot t)$
LC 5	>8	10 ⁻⁶	14.5	0.05	$\theta = -\frac{1\pi}{12}\cos(0.10\pi\cdot t)$

- 1. Brief on LNG ISO tank container
- 2. Drivers & cases of LNG transport in ISO tanks
- 3. Governing Regulations & Standards
- 4. Practice of 1st trans-ocean transport and experiments
- 5. Findings and conclusion

Finding 1: the feasibility of long distance transport proven

	Empty tanks	Heavy tanks
Port of origin	Ningbo Port	Antwerp
Destination	Antwerp	Ningbo Port
Shipper	COSCO Shipping	Maersk
Duration	29 D	30 D at sea + 15 D stack and on road

LNG filling data

Tem.	-159°C	MARVS	4.83bar
Density	440.6 kg/m³	Mass	17220 kg (86%)

LNG discharged to end user

Tem.	-148.8°C	Discharged mass	16900 kg
Pressure	1.6 bar	Heel cargo	300 kg

Finding 2: the ISO tank technology proven as reliable

	Tank no.	MARVS (MPa)	Aver. Ambient temp. (°C)	Actual holding time (D)
	8100100	0.75	11.04	78.89
	8100121	0.75	10.35	69.30
LN2	8100245	0.75	9.17	68.64
	8100029	0.75	13.32	119.28
	8100060	0.75	11.79	91.12

	Tank no.	MARVS (MPa)	Aver. Ambient temp. (°C)	Actual holding time (D)
	8100116	0.75	11.53	113.23
ING	8100097	0.75	13.08	129.19
LING	8100230	0.75	13.52	121.53
	8100034	0.75	17.24	174.79
	8100055	0.74	17.03	145.96

Finding 3: calculated holding time is not accurate enough

Tank No.	Filling medium	Actual holding time (days)	Calculated holding time (days)	Deviation
8100116	LNG	113.23	168.00	0.67
8100097	LNG	129.19	165.20	0.78
8100230	LNG	121.53	171.00	0.71
8100224	LNG	156.08	235.00	0.66
8100034	LNG	174.79	199.00	0.88
8100055	LNG	145.96	159.00	0.92

ANALYSIS

- The calculated holding time is based on the thermal equilibrium condition, i.e. ideal condition.
- Actually, there are effects from thermal stratification and uneven heat flow.
- That's why the actual holding time is always shorten than the calculated holding time.

A correction factor of 0.6~0.9 is recommended to be applied on the calculated holding time.

Finding 4: pressure change trend is similar despite different tanks

LNG pressure against time curve under static condition

Finding 5: pressure escalate slightly faster under static condition

Finding 6: pressure change dramatically in yard after shipping

Finding 7: BOR change is limited under extreme condition

The boil-off rate may increase under ٠ moderate sway condition, but the extent is 26 very limited; The BOR even descend under relatively ٠ 25 stable or adverse condition. Flow/slm 24 Gas flow (dynamic) 25 BOG flow/m³ Gas flow(static) 23

Scale 8

Safety, environmental protection, Create value for clients & society

Scale 3

scale 4

15

Finding 8: a remaining holding time prediction system developed

A remaining holding time prediction system was developed based on collected data and analysis.

Prediction System or ccs	f Non-loss Holding Tiu 国船级社武汉规范研究所 Wuhan Rules & Research Inst Copyright(C) 2018	me of LNG Tank Containe 所(Ver1.0) titute (Ver1.0)	ers
液氮静态日蒸发率 (%/Day Static evaporation rate for LN2) 0.17	LNG密度(kg/m3) Density of LNG	434.15
初始充装率 (%) Initial filling rate	81.22	气化潜热(kJ/kg) Latent heat of evaporation	510.42
罐箱体积 (m3) Nominal capacity	43.60	LNG总质量(kg) Gross mass of LNG	15375
有效容积 (m3) Effective capacity	35.41	安全阀起跳压力 (MPa) Setting pressure of relief valve	0.75
LNG静态日蒸发率(%/Day Static evaporation rate for LNG	0.11	环境温度 (C) Ambient temperature	30.0
剩余维 Remaining H 1D Date 39782 201701131515	持时间(天) holding time	83.54 L Status	
0 0d1	Qd2 FacT1	FacT2 FacRuss1 F	acRuss2

Smart phone APP

Conclusion

- LNG ISO tank containers provide final gas consumers an alternative solution, by which the energy independence will be further guaranteed.
- With the dramatic progress of ISO tank technology, the feasibility of trans-ocean and long time transport is proven as practical and reliable;
- The calculated holding times, which attained from the current method based on thermal equilibrium assumption, deviate the actual holding times by 10-40%, this should be taken into account when planning the transport;
- The movement of ISO tanks, even under extreme condition, poses very limited effect on the boil-off rate;
- A remaining holding time system is of great use to ensure the transport safety;
- The pressure change trend in empty tank (with limited volume of LNG for cold-keeping) need to be further studied.

Courtesy of COSCO Shipping

Safety, Environmental protection, Create value for clients & society

For more details, please contact GAN Shaowei, China Classification Society E-mail: <u>swgan@ccs.org.cn</u> TEL: (65) 9652 1438