

FILTRATION FOR ALTERNATIVE MARINE FUELS

Kai Wölk
Michael Hertlein
Boll & Kirch Filterbau GmbH

14. Mai 2024, Nautisch-Technischer Inspektoren-Kreis Hamburg

Kompetenz aus mehr als 70 Jahren Erfahrung

1950

Gründung

Gründung der Boll & Kirch Maschinenfabrik in Köln-Ehrenfeld durch die Herren Walter Boll und Josef Kirch

1968

Patent

Produktionsstart für den neuen patentierten Automatikfilter mit druckluftunterstützter Rückspülung

1976

Internationalität

Unterzeichnung des ersten internationalen Vertreter-vertrages mit der japanischen Firma Misuzu Machineries & Engineering Ltd.

1978

Filterkerzen

Wickelkerzenserienfertigung: Endlosproduktion von Kerzenelementen mit spiralförmigen, vorgespannten Stützkörpern.

1980

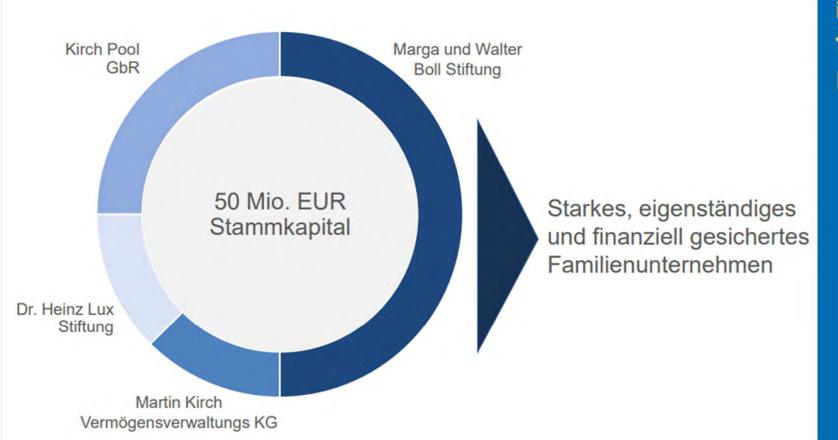
Automatikfilter

Erste Serienproduktion für Automatikfilter.

2017

Produktion in China

Eröffnung der ersten Produktionsstätte im Ausland, der Bollfilter China Manufacturing Ltd.


2021

Expansion - Fertigstellung Werk II

- Gründung BOLLBRANIC zur Entwicklung und Produktion von SiC Membranen
- Forschung & Entwicklung
- Ersatzteillogistik

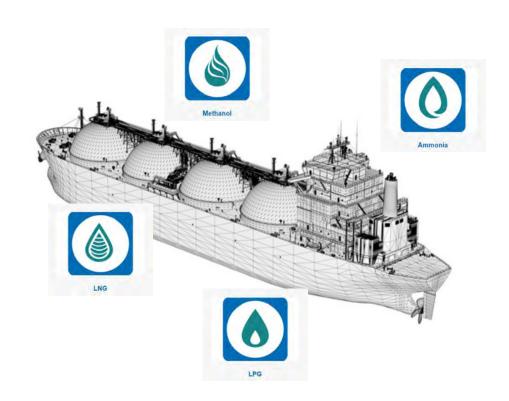
Starker Partner mit 50 Mio. EUR Stammkapital unter vier Gesellschaftern verteilt

Die Gesellschafterstruktur ist die Basis für die finanzielle Unabhängigkeit

Agenda

1. Introduction to Alternative Marine Fuels

- Pathway to the Future
- Key Characteristics and Challenges
- Product Portfolio for Alternative Marine Fuels
- Reference of Fuel Filter Application

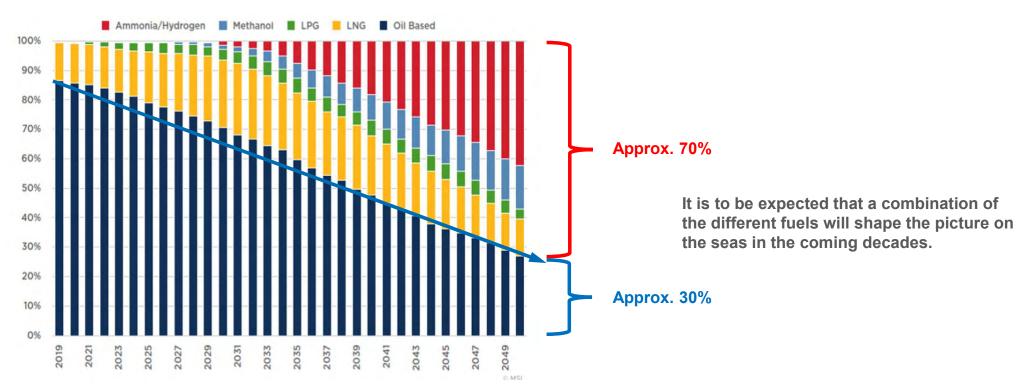

2. Filtration Standards

- ISO 16889
- ISO 4406

3. Practical Experience

- LNG Filtration
- LPG Filtration

4. Summary and Discussion



Pathway to the Future

Source: ABS, Zero Carbon Outlook 2022 Figure 71, Fuel mix forecast

Key Characteristics and Challenges

	Conventional Marine Fuels		Alternatiy Marine Fuels			
	HFO	Low Sulphur Fuels	LNG	LPG	Methanol	Ammonia
Energy density	•	•	0	•	•	•
Toxicity	0	•	•	•	0	•
Standardization of fuel quality and filtration	•	•	0	•	•	•
Degree of contamination	•	•	0	•	•	•
Required size of the filtration surface	=	-	-	-	^	_
Tendency of applied filtration fineness	-	=	-	-	•	_
Requirements on filtration equipment	•	•	•	•	•	•

Explanation of symbols	Trend		Ranking		Comment	
	_	Upwards		Good	Please note, even finer gradations	
		Persistent	0	Average	within the colors are possible, but are	
	•	Downwards	•	Bad	neglected for the sake of simplicity.	

Source: Boll & Kirch, CIMAC Congress 2023

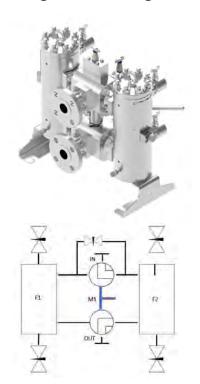
Paper 2023 | 390, Table 2

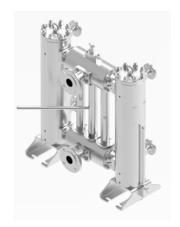
Each fuel brings its own advantages and challenges

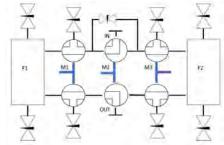
- Harmful/Toxic
- High Pressures
- Low Temperatures

In this presentation we would like to share our experience in regard to <u>fuel contamination</u>

Product Portfolio for alternative Marine Fuels


Simplex Filters


Duplex Filters


Single-Block Design

Duplex Filters

Double-Block and Bleed Design

Product Portfolio for alternative Marine Fuels

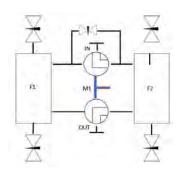
Simplex Filters

Main Product used for

- Safety filter
- FVT, GVU, GVT etc. close to the Engine

Product Criteria

- Bolted Design (no welds)
- Material dual certified Stainless Steel 316/L
- Compact Design
- · Connections for wall mounting
- Floor mounting feets available
- Simple maintenance (few parts)
- Gas-tested / Gas-tight


Product Portfolio for alternative Marine Fuels

Duplex Filters Single-Block Design

Main Product used for

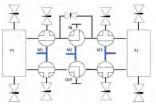
Harmless Gases- / Liquids

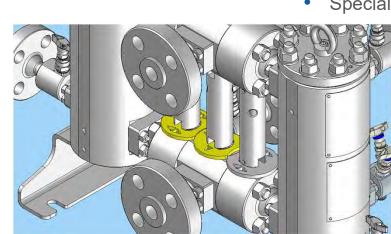
Product Criteria

- Bolted Design (no welds)
- Material dual certified Stainless Steel 316/L
- Easy handling
- Compact Design
- Integrated pressure equalisation line
- Floor mounting feets available
- Gas-tested / Gas-tight

Duplex Single-Block Filters have rarely been used for the **alternative Marine Fuels**. So far, mainly supplied for test bench purposes.

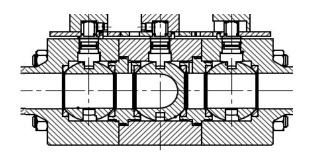
The marine propulsion market is moving towards **Duplex Double-Block and Bleed Filters** due to the safety benefits.


Product Portfolio for alternative Marine Fuels


Duplex Filters Double-Block and Bleed Design

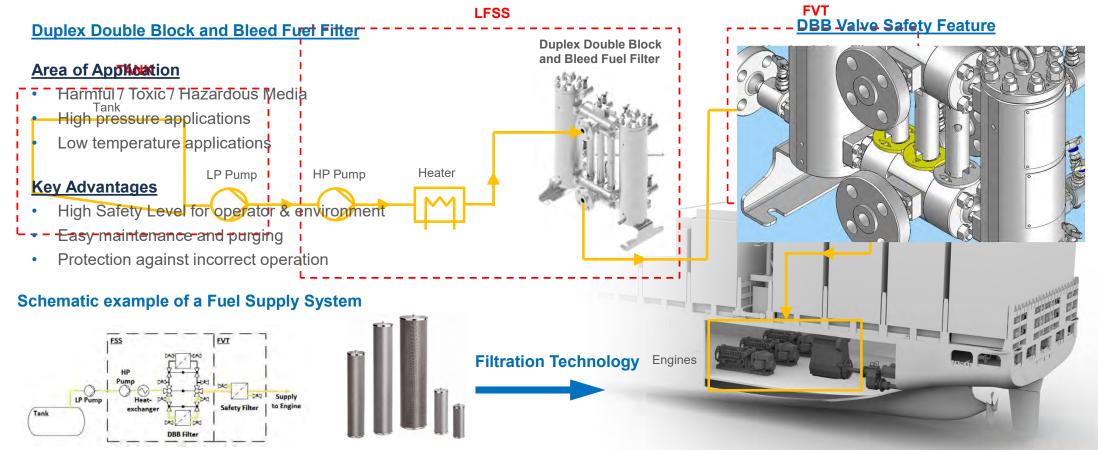
Main Product used for

- Harmful / Toxic / Hazardous Medias (e.g. MeOH, NH3)/ or
- High Pressures/ or
- Low Temperatures

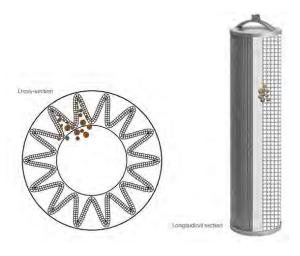


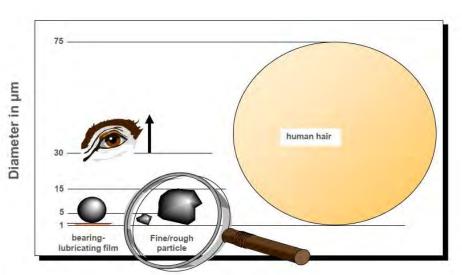
Product Criteria

- Bolted Design (no welds)
- Material dual certified Stainless Steel 316/L
- Double sealing on all ports and connections
- High Safety Level
- Gas-tested / Gas-tight
- Special Switch-over valve without flow interruption



Reference of Fuel Filter Application





Filtration

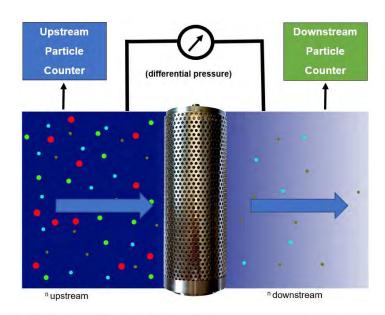
Filter Element Details

- Fully welded construction, not crimped
- Material stainless steel 316
- Flow possible in both directions
- Pleated surface area for more filtration area and higher dirt hold capacity
- Tested on efficiency as per ISO 16889 (ß-values / % efficiency rating)
- Differential pressure resistance 10 bar

Filtration Standards

ISO 16889: Solid Particle Removal Efficiency of Hydraulic Filters

<u>Multi-pass</u> test method for assessing <u>fluid</u> filter efficiency via ß-values. (Measurement of particles up-and downstream of filter element)


Benefits:

- International standard for evaluating filter performance
- Enables comparison of different hydraulic filters
- ß-values are globally accepted for the respective application

Lesson Learned:

- It is not enough to just specify 10 µm filter elements:
 - β 10=10 (90% particle removal \geq 10 μ m)
 - $\&10=200 (99,5\% \text{ particle removal} \ge 10 \ \mu\text{m})$

Illustration of the function of a filter element

$$\beta(x) = \frac{counts \ upstream \ (x \ \mu m)}{counts \ downstream \ (x \ \mu m)}$$

efficiency (x) [%] =
$$\frac{\beta(x) - 1}{\beta(x)}$$

Filtration Standards

ISO 4406: Oil Purity Classification

Method for determining the level of contamination of solid particles inside oils (hydraulic- and lubrication oils)

- 1st digit = Amount of particles >= 4 µm per 100 ml of fluid
- 2nd digit = Amount of particles >= 6 μm per 100 ml of fluid
- 3rd digit = Amount of particles >= 14 μm per 100 ml of fluid

Example 18/16/14 Particle ≥ 4µm Particle ≥ 14µm Particle ≥ 6µm

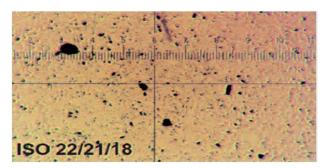
Benefits:

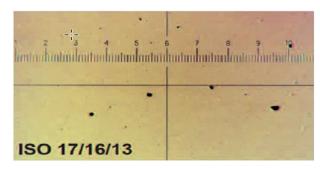
- Enables comparison of fluid purity
- International accepted standard

Lesson Learned:

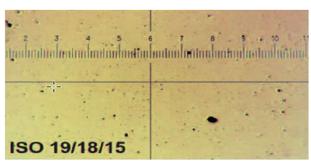
Could be used as a reference to develop fuel purity specifications

Number of parti	Number of particles per milliliter		> C (-)	> 10 (-)	ISO 4406:2021
More than	Up to and including	≥4 µm (c)	≥6 µm (c)	≥ 14 µm (c)	Scale Number
2500000	-				> 28
1300000	2500000				28
640000	1300000				27
320000	640000				26
160000	320000				25
80000	160000				24
40000	80000				23
20000	40000				22
10000	20000				21
5000	10000				20
2500	5000				19
1300	2500				18
640	1300				17
320	640				16
160	320			_	15
80	160				14
40	80				13
20	40				12
10	20				11
5	10				10
2,5	5				9
1,3	2,5				8
0,64	1,3				7
0,32	0,64				6
0,16	0,32				5
0,08	0,16				4
0,04	0,08				3
0,02	0,04				2
0,01	0,02				1
0,00	0,01				0





Filtration Standards


Difference in ISO 4406 classes

New Oil, delivered in drums

New Oil, delivered in mini-container

New Oil, delivered in road tanker

Required for modern hydraulic systems

Practical Experience

Sources of Fuel Contamination

- Extraction and production
- Storage
- Transport
- Pipe work installation with missing or insufficient flushing process
- Clogging due to frozen impurities
- Gas carrier vessel in ballast vs. cargo voyage

Practical Experience

LNG Filter upstream to Fuel Supply System

<u>Description:</u> Contamination found in filter element after only 38 running hours

Source: Missing or insufficient flushing process after pipe welding

<u>Description:</u> After 4 months of system operation and after ≈35 running hours

Source: Common contamination of LNG fuel

Practical Experience

LPG Filter Fuel Supply System

Contamination found in LPG Filter

Summary & Discussion

Improvements and Lessons Learned

- Filter selection acc. to ISO 16889 with ß-values
- Fuel standards must be developed in order to create a global fuel purity (ISO/TC28/SC4/WG18 Methanol Working Group)
- Flushing procedures to be established
- Gas leakage tests and double block and bleed filter arrangements are necessary to manage the challenges and critical characteristics of the future fuels (toxicity, cryogenic, high pressure ...)

Passion. Tradition. Expertise.

THANK YOU FOR YOUR ATTENTION