MAN Energy Solutions Future in the making

Hydrogen

Ammonia

SNG

Biogas

Ammonia as a Shipping Fuel in 2 Stroke Engines

NTIK, Hamburg 13.12.2022

Colin Peesel Senior Sales Manager Engine & Marine Systems

Agenda

- **1 MAN-ES** brief introduction
- **2** MAN B&W engines for alternative fuels
- **3** Alternative fuel outlook
- **4** Ammonia engine development
- **5** Market introduction and future-proof propulsion
- **6** Summary

MAN-ES brief introduction

We engineer systems for deep decarbonization in sectors that matter most

vovinci bic

unings to

Company profile

MAN Energy Solutions enables its customers to achieve sustainable value creation in the transition towards a carbon neutral future.

Addressing tomorrow's challenges within the **marine, energy and industrial sectors**, we improve efficiency and performance at a systemic level.

Leading the way in advanced engineering for more than 250 years, we provide a unique portfolio of technologies.

Headquartered in Germany, MAN Energy Solutions employs some 14,000 people at over 120 sites globally. Our aftersales brand, MAN PrimeServ, offers a vast network of service centers to our customers all over the world.

5

Strategic Business Areas

Marine

Energy & Storage

Industries

Aftersales MAN PrimeServ

KPI's 2021

14.062 Employees worldwide

Public

Our design and production network

Our global aftersales network

MAN PrimeServ

*Number of countries served by headquarters, service locations or responsible sales partners.

Marine: Navigating the course ahead

Comprehensive solutions and products for maritime applications

- Two-stroke and four-stroke engines for marine applications
 (Output range from 450 kW to 82.4 MW)
- Marine GenSets

(Output range from 450 kW to 11.2 MW)

- Engine controls for integrated engine and exhaust gas treatment systems (SCR, EGR)
- Propellers and aft-ship systems (FPP, CPP)
- Axial and radial turbochargers for two-stroke and fourstroke engines, injection systems, systems electronics
- Electrical and battery hybrid marine solutions
- Fuels: heavy fuel oil, diesel, gas, dual fuel, multi fuel (Methanol, Ethane, LPG)

Full-Liner: From components to complete marine propulsion systems incl. fuel gas supply systems (MAN Cryo)

2

MAN B&W engines for alternative fuels

Motivation - We are committed to decarbonization Guess why?

~ 80-90%

...of global freight is transported by sea. ~ 3%

...of the global CO2 emissions are released by the shipping industry ~ 50%

...of global freight is transported by a MAN ES engine.

Our engines are responsible for ~ 1.5 % of the global CO2 emissions, so we have a significant impact on the global maritime sustainability agenda.

Powering sustainable shipping by opening clear routes MAN Energy Solutions <u>supports all</u>

LNG LPG **Ethane** Ammonia **Methanol ME-GI ME-GA ME-GIE ME-LGIM** $ME-LGIP \longrightarrow 2024$

MAN B&W two-stroke engines for alternative fuels

2 stroke DF engines

status quo – 10/2022

1000 2s DF engines

54% of orders are DF in 2022

22 GW total DF power

263 DF vessels in service

Future fuels have much lower density than Diesel

Overview Future Fuels tank size requirements

Comparison of storage volume for the same energy amount and additional space for cylindrical shaped tanks of cryogenic fuels. (Indicates change when tank shape is included)

CH₂

T_{amb} / 350 bar

tbd m³

Generic De-fossilization/carbonisation pathways

Overview Future Fuels & Emissions

- all % are in energy share with MGO
- Some uncertainty with E-NH3 values!

Draft IMO	toda	y	Intensity 40% red	uction			Intensity 70% reduction GHG 50% Reduction
	2022	2025	2030	2035	2040	2045	2050
Draft Fuel EU	toda	y + -2% CO2 eq reductior	-6% CO2 eq reduct	ion 🔶 -13% CO2 eq	reduction +26% CO2 eq redu	uction + -59% CO2 eq re	duction -75% CO2 eq reduction
LNG		Required CH4 slip to Meet target: ~3,5 g/kW	h Required CH4 slip to target: ~2,4 g/kWh	meet Required CH4 target: ~1,0 g/	slip to meet 20% Bio-CH4 kWh ~1,0 g/kWh	73% Bio-CH4 with ~1,0 g/kWł	100% Bio-CH4 with ~1,0 g/kWh
Bio-Methanol		Bio - Methanol blend 2.5%	Bio – Methanol blend 7%	Bio – Methan blend 15.5%	ol Bio – Methanol blend ~31%	Bio - Methanol blend ~70%	Bio - Methanol blend ~89%
E-Ammonia		E-NH3 blend 2%	E-NH3 blend 6%	E-NH3 blend	14%	E-NH3 blend 61	% E-NH3 blend 78%
E-Hydrogen		E-H2 blend 2%	E-H2 blend 6%	E-H2 blend 1	4% E-H2 blend 27%	E-H2 blend 61%	E-H2 blend 78%
Liquid BioFuel		Bio-Diesel blend 4% or HVO blend 5%	Bio-Diesel blend 10. or HVO blend -14%	5% Bio-Diesel ble or HVO blend	Bio-Diesel blend 4 I 32% or HVO blend 649	19% Carbon neutral fuel % feedstock	s or fuels with more sustainable should be considered

Many decarbonisation paths are possible to meet future legislation

Fuel price development - overview

(Status October 2022 - without CO2 taxation)

Ammonia – NH3

Ammonia – NH3

Availability: Worldwide ammonia ports

Storage & handling

- Storage below -33°C at 6 bar
- Highly toxic to people & environment
- Leakage detection necessary
- Personal protection equipment necessary

Conclusion

- Highly toxic to people & environment
- Cylindrical pressure tanks require more space
- Green ammonia CO2e emission free
- Conventional ammonia widely available
- Attention to N2O slip (GWP factor ~ 265)

Grey ammonia widely available, hardly any blue or green ammonia

Alternative fuel outlook

Two-stroke fuel mix forecast towards 2050 (Fleet)

Distribution of 34% single fuel, 27% Ammonia, 21% Methanol, and 15% LNG expected in 2050

Assumptions: Scenario is based on known factors such as world trade growth, EEDI, EEXI, expected CO2 regulation (currently unspecified), etc.

Expected fuel share of tomorrow

- Drivers of methanol and ammonia uptake are availability of technology, consumer demand, expectation of future CO2e regulation and/or carbon pricing
- Other factors such as efficiency, batteries, ship design, operational improvements contribute to decarbonization

Only newbuilding included in graph; a more or less gradual transition to green fuels is built into each fuel which then contains both a fossil and green share *Mass of the fuel types: Energy content of fuels varies due to differences in gravimetric heating value

Two-stroke fleet fuel mix: focus methanol and ammonia

Methanol is expected to have a fast uptake based on technology experience and market demands, ammonia as a new fuel will have a responsible introduction emphasizing safety (S-shaped curve).

MAN Energy Solutions Future in the making

MAN B&W Ammonia Box Constraints

The first MAN B&W Ammonia fueled engine will be delivered to a shipyard

Two-stroke ammonia engine development schedule

Two-stroke ammonia engine development schedule

Components at RCC for ammonia engine development

MAN Energy Solutions

RCC ammonia tank and bunkering facilities

Status December 2022

Installation at RCC

- We are now finalizing all the installations around the engine, such as bunkering and supply, with safety as the overall guiding principle.
- We have not started our test engine yet. It's due to a shift in priorities. We want to finish some of the surrounding systems in another way, or more elaborately than before.
- We expect to start the engine test campaign sometime at the beginning of next year.

Materials

Fuel Supply System

- 316L steel is recommended.
- To be welded with backing gas / pickling.

LGI injection system

Current materials expected to perform satisfactorily.

Elastomers

Suitable material found for both O-rings and accumulators.

Stress corrosion cracking

is solved by the industry already, by requiring small amount of waterin the ammonia and requirements to the steel grades, welding procedures etc.

The LGI combustion principle

Ammonia combustibility

- Ammonia is not a hydrocarbon.
- It doesn't burn like hydrocarbons.
- It reacts much slower than hydrocarbons.

The MAN B&W ammonia engine design philosophy

"Ammonia mode":

- Small pilot flame.
- Ammonia ignited by the pilot flame.
 - "Liquid fuel mode":
- Identical performance as conventional fueled Diesel engine.

MAN Research Centre Copenhagen (RCC) & The LGI injection system

How do we handle potential Nitrous Oxide emissions?

Nitrous oxide $(\mathrm{N}_2\mathrm{O})$ removed by engine tuning.

- Unburned NH₃ and NO_x is removed in the SCR reactor.
- Dosing of additional ammonia to SCR reaction if needed.
- Known SCR technology is suitable.
 MAN SCR reactor can be applied.
- Engine designed for both fuel oil and NH₃ as fuel.

Auxiliary systems

Ammonia catch system

Requirements

- Catch blow off ammonia safely
- Avoid ammonia odor and toxicity
- To work even in the event of system failure

Status

- Small scale test at our research center completed with good results
- Full scale solution being designed
- Patent pending

Main focus areas in the development

Market introduction & Future-proof propulsion

The ammonia engine design will be verified on a 60 bore engine design throughout 2024 at our licensee

Ammonia engine - market introduction

Delivery of the first ammonia engine to a shipyard ultimo 2024. Available for general ordering after obtaining positive seagoing service experience.

* Number of engines in limited sales release will be based on risk evaluation

The 60-bore engine

Typical applications

VLGC

Container feeders

Panamax & newcastlemax bulk carriers

PCTC

LR1 & LR2 tankers

Modularity to rely on

MAN B&W ME-C two-stroke engines

Modular design enables extensive retrofit options

By ensuring full fuel flexibility and extensive retrofit capabilities with a proven record, MAN Energy Solutions future proof your investment

Fuel types	ME-C	ME-GI	ME-GA	ME-GIE	ME-LGIM	ME-LGIP
Fuel oil	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
LNG	Retrofit	\checkmark	\checkmark	Retrofit	Retrofit	Retrofit
LEG (Ethane)	Retrofit	Retrofit	-	\checkmark	Retrofit	Retrofit
Methanol	Retrofit	Retrofit	-	Retrofit	\checkmark	Retrofit
LPG	Retrofit	Retrofit	-	Retrofit	Retrofit	\checkmark
Ammonia	Retrofit	Retrofit	-	Retrofit	Retrofit	Retrofit

Retrofit of engines is a proven concept.

22 vessels completed, 4 on order

MAN B&W two-stroke retrofits (19 engines)					
Nakilat	"Rasheeda"	LNG retrofit of 2 x 2s Main Engines on 1 x LNG Carrier			
Hapag Lloyd	"Brussels Express"	LNG retrofit of 2s Main Engine on 1 x Container vessel			
Navigator LLC	"Navigator Aurora"	Ethane retrofit of 2s Main Engine on 1 x Ethane Carrier			
BW LPG	15 vessels	LPG retrofit of 2s Main Engines on 15 x LPG Carriers			
MAN four-stroke retrofits (4 engines)					
Wessels Reederei	"Wes Amelie"	SNG retrofit of 4s Main Engine on 1 x Container vessel			
Baleària	"MV Napoles", "MV Sicilia"	LNG retrofit of 2 x 4s Main Engines on 2 x RoPAX vessels			
GIE Dragages-Ports	"Samuel de Champlain"	LNG remotorization of 2 x 4s Main Engines on 1 x Dredger			
Retrofit projects on order					
Matson Inc.	"Daniel K. Inouye" + sister	LNG retrofit of 2s Main Engine on 1+1 x 3600 TEU			

Tianjin Southwest

"Gas Gemini", "Gas Aquarius"

LPG retrofit of 2s Main Engine on 2 x LPG carriers

Summary

Summary

The ammonia engine is a viable solution for decarbonizing of shipping, however it must be ensured that no other emissions compromises the environmental benefits of ammonia as fuel.

- N₂O will be handled through engine tuning.
- MAN ES is also looking into N₂O handling by after-treatment, in the unlikely event that engine tuning is not sufficient to handle all N₂O.
- NO_x will be in compliance with existing TII and TIII limits.
- NH3 emission (slip) from the combustion will be handled via an SCR.
- Ammonia is expected gain significant marked share towards end of the decade, driven by lower production cost and zero carbon properties.

Thank you.

MAN Energy Solutions SE Colin Peesel Senior Sales Manager Engine & Marine Systems T +49 151 25 64 84 33 Colin.Peesel@man-es.com www.man-es.com

Disclaimer

All data provided in this document is non-binding.

This data serves informational purposes only and is especially not guaranteed in any way.

Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.