

The leading fluid control expert for automated and connected onboard systems

HOPPE MARINE

KEY FACTS

75 Years marine experience 8 Offices worldwide 250 + Employees worldwide

24 / 7 Service availability 7,000 + Ships equipped

1,400 + MAIHAK Performance Systems installed 1,500 +

Valve Remote Control Systems installed 2,000 +

Roll Reduction Systems Installed 2,500 +

Anti-Heeling Systems installed 250,000 +

Tank and draught sensors installed

About me

- Mechanical engineer with 17 years of experience in automotive engine development & testing
- Almost three years of experience in maritime business
- Ship enthusiast since ever....

Home

About Solutions

s Network

Contact

News Jobs

Hoppe Marine: Family owned and independent

PROVEN SYSTEMS

DIGITAL SOLUTIONS

Hoppe MIoT Maritime Internet of Things

Ganzheitliche Energie- und Messdatenerfassung an Board.

YOU CAN'T

OPTIMIZE

WHAT YOU DON'T

Why? – Reasons for High Frequency Data acquisition

Why do our Customers decide for MIoT System Digitalization

STRATEGIC

FLEET CONNECT

- Vessel digitalization for efficient fleet management
- The connectivity saves service costs and reduces total cost of ownership

COMPLIANCE AND REPORTING

- The company sees increasing reporting and compliance tasks and would like to be well prepared.
- Necessary data acquisition and logging for reporting (EU MRV, ETS, Ballast Water e.g.)

GENERATOR LOAD

SPEED CONSUMPTION

TRIM OPTIMIZATION

MIOT DATA COLLECTION AS PRECONDITION FOR OPTIMIZATION

HIGH QUALITY DATA AQUISITON

Extreme Weather Warnings

Earthquake Forecasts

E³ - Energy Efficiency Emissions

How well do I know my energy consumers?

Electric Flow Heater: 18,000 Watts Hair Dryer: 1,600 Watts LED Light Bulb: 4 Watts

Yearly Costs For one Cooling Water Pump

120 kW * 365 days *24 h * 180 g / kWh = 190 MT \rightarrow 190 MT * (500\$/MT fuel costs + 3,10 tons CO2/MT * 100\$/ MT CO2 Certificates) = 155 000 \$

A wide variety of design, operational and economic solutions

Achieving the goals of the Initial IMO GHG Strategy will require a mix of technical, operational and innovative solutions applicable to ships. Some of them, along with indication on their approximate GHG 5-50% reduction potential, are highlighted below. up to **75%** Fleet 2-50% Extensive speed management, 1-10% Concept, optimization logistics and Voyage speed and incentives optimization capability 5-15% Power and . . propulsion systems 2-20% 80-100% 5-25% 35% Hull and 90% Hydrogen and Hull biofouling 1-10% 50-90% **Bio-LNG/LPG** superstructure other synthetic **Biofuel 3rd** management Energy **Full electric** fuels generation management

15

How Ship to Shore works

The Data Highway

On Board – System Overview

On Board

From a Technical Perspective of Data Integration

Groups Devices	Signals	Supported Protocols and Signal Types	Maker / Partner	Performance Monitoring Sensors				aqua						
Nautical	All available standard NMFA	 Serial DS485/422 NMFA 0183: 	Furuno - Transas - Konnshero -	Shaft Power Meter (SPM)	Shaft Power - Shaft Speed - Shaft Torque - Shaft Energy Counter - Main Engine Power - Main Engine Speed - Main Engine Torque - Main Engine Energy Counter - Main Engine Running Hour Counter - Main Engine Load -	RS485/422 (Modbus or NMEA) Ethernet (Modus TCP or NMEA UDP) 0/4.20mA 0-10V Pulse	Hoppe Marine • MAIHAK • Kyma • Lemag / Chris Marine • Brolich • Datum • Kongsberg • Means • VAF • Trelleborg • BMT	ABB≈	metr		PH BROLICH	, ChartWorld	Consilium	
LODIS / VDR / Autopliot	0183 - sentences	 IEC61162-1 (4800bps) IEC61162-2 (38400bps) 	Raytheon - Consilium - Raymarine - Sam Electronics - Saab - Sperry Marine - Veinland -		Main Engine Light Run • Main Engine SFOC (with Flowmeter)				TETE	ecos	À		WARTSILA	
Speedlog	Speed Trough Water • Distance through Water (with SPM) • Slip through Water (with SPM)	Ethernet / LAN 10/100 Mbit: IEC61162-450 UDP Necessary NMEA buffer or multiplexer for NMEA einnal acquisition will be	ChartWorld • Wärtsilä • Yokogawa - Interschalt • DanElec • Tokimec	Flowmeter (Volumetric + Massflow)	Volume Flow • Mass Flow • Density • Temperatur • Counter	RS485/422 (Modbus) Ethernet (Modus TCP) 0/420mA 0-10V Pulse	Hoppe Marine • Endress+Hauser • Krohne • Kral • Emerson • Aquametro • VAF • SAAKE • Tricor / KEM • GEA • Alfa Laval • ABB • Nitro Seiko • Tokico	Canelec DEFE Marinepower EMERSON Endress+Hauser						
GPS	GPS Position • Course Over Ground • Distance over Ground • Slip over Ground (with SPM)	supplied.						0				1 Alexandre	KROHNE	
Echosounder	Water Depth / Keel Clearance			Autoflushing Filter	Flushing volume counter - Flushing counter	Pulse	Boll & Kirch	FURUNO				VONCERERC	MAC	
Anemometer	Wind Direction Rel / True • Wind Speed Rel / True • Wind Speed Max			Tank Content / Draft Measu	irement			KRAL II Durchfle	ussmesstechnik			KONGSBERG	System Solutions	
Rudder Indicator	Rudder Angle • Rudder Angle Max • Rudder Activity	 NMEA or: 0/4-20mA 0-10V +10V, +12V, +15V Syncro 			Draft FWD, AFT, MID • Draft PP • Dynamic Draft (with Motion Sensors)	• Modbus TCP / IP • OPC UA • RS422/RS485	Hoppe Marine	(R) Nautilus Labs		КҮМА			MARORKA	
Motion Sensor	Roll Angle • Roll Period • List Angle • Accelerations X,Y,Z • Pitch Angle • Pitch Period • Trim Angle • Dynamic Trim (with	UDP, NMEA serial protocol	Hoppe Marine (HOSIM 2)					Schneider		NORTHROP GR	SAMSU	ING	AACKE)	
	Draught Sensors) • Period Ratio			Tank Content Measurement	Tank Volume • Tank Mass • Tank Filling Height • Tank Density	Modbus TCP / IP • 4-20mA • RS422/RS485	Pleiger • Panasia • Musasino • Hamla	D Liectric		Sperry Marine		0	0	
	Roll Angle (max) - Roll Period - List Angle - Pitch Angle (max) - Pitch Period - Trim Angle - Comfort Level		Hoppe Marine					TRANSAS		RUMENTS	TERASAKI	WÄRTSILÄ	WÄRTSILÄ Wartsilli SAM Electronice	

On Board Data Collector

Data Acquisition – Embedded iPC

Data Sources

- Hoppe MIoT Ready Sensors
- Hoppe DPS
- NMEA 0183 over IP
- NMEA 2000 over IP
- MODBUS TCP
- OPC-UA
- MQTT

Energy Monitoring

MAIHAK Shaft Power Meter

History, Design and Measuring Principle

Fig. 1: Receiver MDS. 2

MAIHAK

HOPPE

Fuel Consumption Measurement

Measuring Principle

Coriolis Mass Flowmeter

- True mass flow measurement.
- Multi-parameter measurement, while measuring the mass flow, the volume flow, additional temperature, and density can be obtained at the same time.
- Very high accuracy for mass flow measurements.
- Highly accurate density measurement.
- Unaffected by pressure, temperature, and viscosity.
- Easy to install, clean, and maintain, no inlet and outlet sections required.

Theory of Coriolis - Flow Measurement

Electrical Power Monitoring (Rogowski Coils)

Electrical Power Measurement for individual or combined loads (e.g. single fans or reefer junction boxes)

Sources

- Auxiliary Generators
- Shaft Generators
- Shore Power / Cold Ironing
- Fuel Cells / Battery Systems

Consumers

- Reefer Containers
- Cargo Pumps
- Refrigeration Systems
- Air Conditioning Systems
- Engine Room / Cargo Hold Fans

Upcoming: CEMS

Continuous Emission Monitoring System

Infrared Gas Analyzer for direct CO₂ / GHG Measurement

Key Features

- CO₂/N₂O/CH₄ concentration including mass flow detection
- SO₂/CO₂ concentration for scrubber applications

Features	Flow Meter (Coriolis Type)	Direct CO2 Measurement
Accuracy	Good	High
Consideration of residuals	Yes	Yes
Consideration of fuel qualit value and carbon intensity)	y (heat Conditionally	Yes
Consideration of fuel consi over individual legs of the j	umption ourney	Yes
Consideration of the specif consumer (ME, AE, Boiler)	ic Yes	Yes
©Olaf Eggert/Kiel		

How to ensure Data Quality?

Live Demo

CO₂ Emission Legislation

Carbon Intensity Indicator - CII

Cll Correction Factors – CO₂ Emission Legislation

Referring to MEPC.355(78) - Specific energy expenditures allowed to be deducted in CII calculation

$$CII_{\text{Ship}} \triangleq \frac{\sum CF_j \cdot \{FC_j - (FC_{voyage,j} + TF_j + (0.75 - 0.03_{yi}) \cdot (FC_{electrical,j} + FC_{boiler,j} + FC_{others,j}))\}}{fi \cdot fm \cdot fc \cdot fi_{\text{VSe}} \cdot Capacity \cdot (D_t - D_x)}$$

- *CF_j* Fuel mass to CO2 conversion factor
- *FC_j* Total fuel consumption
- (FC_{electrical,j} + FC_{boiler,j} + FC_{others,j}) Cargo related energy expanditures

Cll Correction Factors – CO₂ Emission Legislation

Referring to MEPC.355(78) – Reefer, Reliquefaction & Refrigeration Plant

WHAT ?

DOES THE CUSTOMER CAN EXPECT

Information Services

Holistic Approach for Crew and Vessel Management Support in Terms of Fleet Optimization

Crew Connect - Operative

A web-based application

- Visualization of live operational data and warning messages
- User and access management for individual configuration and thresholds
- High resolution graphs for all primary signals
- User documentation and raw data download
- Optional: Report generation with operational KPIs including nautical and machinery data

Fleet Connect - Strategic

Service Connection

- Data transmission and cloud storage in accordance with highest data security standards.
- Onboard REST-API for integration of eLog's and reporting tools.
- Basic access to Fleet Connect Service Portal

Data Butler

- Including scope of Service Connection
- Backup Protection with unlimited data storage.
- Continuous connection evaluation
- Onshore REST-API for integration of analysis platforms and in-house databases.
- Access to additional modules in Fleet Connect Service Portal

Data Inspector

- Including scope of Data Butler
- Continuous connection, system and data evaluation with proactive troubleshooting
- Fully customizable email notifications for operational data
- Optional subscription for predefined .pdf reports included.
- Access to all modules in Fleet Connect Service Portal

Cloud Ship <-> Shore Transmission Data via API **Experts in Analysis** Platform Storage **Operation Optimization On Shore Fleet View** 1a. 🝸 🗸 Kay Dausendschoen Wärtsilä FOS Overview ✓ Tracking & Awareness ✓ Compliance & Reporting ✓ Hull & Machinery ✓ Voyage Optimisation ··· More **bestship** WIND SPEED AT 10 M - BEAUFORT SCALE < \land Aquafire 0 PASSAGES ΝΑ Layers Zones Summary Passage Graphs Events Machinery powered by Danelec + Aquafire 688 POSITION AQ 34° 59.27' N 121° 38.32' E FROM Vessels Ship's time: 10:47:15 +05:30 **OBS BERTH** BERTH E10 Its SELECT PASSAGE SELECT PORT STAY EXPORT ALL th. (J WEATHER Ð MEASURED WIND Graphs DTA DTG 116.1 NM ETA 2025-01-22 15:52 UTC (i) 0 FORECAST WIND AT 10 M _____ 8.8 kn _≤3 Timeline 🗸 🕤 GRAPH MODE FORECAST SIGNIFICANT WAVE 0.4 m 2 MEASURED EFFECTIVE CURRENT Ф. -1.1 kn 1.5 Qualitex FROM то N 🖸 📼 🗙 MODELLED FUEL CONSUMPTION La Paloma (UY) Cape Town (ZA) S Approach R 0 2025-01-21 04:00 UTC 28.37 t/d ¢ Weather PTA 2022-12-14 16:28 UTC DTG 3,165.5 NM ETA 2023-09-18 22:23 UTC 0 NJORD Marcie Zones FROM T0 PBG FAIRWAY ENTRY 10 25 4 • ¢ 20 UserZones PTA DTG 8.7 NM ETA 2025-01-24 14:45 UTC (i) 15 2025-01-22 00:00 2025-01-18 2025-01-20 00:00 00:00 Sally Brown 2025-01-22 05:30 UTC SPEED FROM то APEX TERMINAL BERTH 12.2 11.80 k Q deepsea ETA 2025-01-25 15:35 UTC () PTA DTG 1.100.7 NM Moreganic 7.5 FROM TO TUNADAL BERTH TILBURY BERTH N OF TAIWAN (\mathbf{J}) (1) 4.5 2025-01-22 ETA 2025-01-24 13:14 UTC 2025-01-18 2025-01-20 PTA DTG 865.2 NM 00:00 SE OF TAIWAN POSITION Woodstock **Propulsion Analyt** 35* 53.80' N EDAN 130° 49.28' E CLOSE Dn TOOUP 200 NM 2025-01-22 05:16 UTC Now

- Optimized Fuel Efficiency Continuous monitoring of engine performance, propulsion efficiency, and fuel consumption allows for real-time adjustments, reducing fuel costs and emissions.
- Improved Voyage Planning Real-time environmental and operational data enhance route optimization, leading to safer and more efficient navigation.
- Regulatory Compliance Automated data logging ensures accurate reporting for emissions regulations and performance standards.
- Data-Driven Decision Making The integration of AI and analytics provides actionable insights, improving
 overall fleet management and operational efficiency.

Overall, **MIoT data collection** transforms vessel operations by increasing efficiency, reducing costs, and ensuring compliance while supporting sustainability goals.

GLAD TO CONNECT.

Uwe Altenbach

Sales Manager u.altenbach@hoppe-marine.com

What's next ?

Future Outlook / Advanced Data Engineering

CEMS - Continuous Emission Monitoring System

Powertrain Development

What goals are pursued?

Engine Base Calibration

- Injection and Ignition Timing
- Variable Cam Positioning
- Emission optimization
- Torque Model
- Air Flow Determination

Advanced Calibration

- Intake Air Temperature Model)
- Oil Dilution Model
- Exhaust Gas Temperature Model
- Drivability

Powertrain Development

Why - Math based Models in Engine Control Units?

- Description of physical correlations
- Substitution of Sensors
- Engine / Component Protection
- Condition based and predictive Maintenance

Advanced Data Engineering

Why - Math based Models in Vessels Energy Data?

- Description of physical correlations for Data Plausibilisation
- Substitution of Sensors
- Engine / Component Protection
- Condition based and predictive Maintenance

A ship Kernel models all conditions

While always providing confidence scores

🧭 Wave height	🧭 Wave direction	🧭 Salinity
🧭 Wind speed	🧭 Wind direction	🧭 Water temp
🧭 Current speed	Current direction	🧭 Draft
🧭 etc.		

Stop limiting your analysis to reference conditions. Go beyond 'good' and 'bad' weather. Go beyond Beaufort numbers. Model all parameters exactly. Bring your analysis and optimizations to the next level. Model all possible conditions and scenarios, with the peace of mind that uncertain predictions will be flagged by low confidence scores.

Product | Ship Kernels | Toqua

Advanced Data Engineering - Example

Example - Suspected misfiring events via main engine's torque damper sensor.

Data Analysis of exhaust gas temperature was used to prove the anomalities

ME Exh. Gas Temp. Cyl8

ME Exh. Gas Temp. Cyl9

- Optimized Fuel Efficiency Continuous monitoring of engine performance, propulsion efficiency, and fuel consumption allows for real-time adjustments, reducing fuel costs and emissions.
- Improved Voyage Planning Real-time environmental and operational data enhance route optimization, leading to safer and more efficient navigation.
- Regulatory Compliance Automated data logging ensures accurate reporting for emissions regulations and performance standards.
- Data-Driven Decision Making The integration of AI and analytics provides actionable insights, improving
 overall fleet management and operational efficiency.
- Predictive Maintenance High frequency data can help to predict the early detection of potential machine failures, reducing unplanned downtime and maintenance costs.

Overall, **MIoT data collection** transforms vessel operations by increasing efficiency, reducing costs, and ensuring compliance while supporting sustainability goals.

GLAD TO CONNECT.

Uwe Altenbach

Sales Manager u.altenbach@hoppe-marine.com

